做空美国期权时的效用最大化

Zhou Zhou
{"title":"做空美国期权时的效用最大化","authors":"Zhou Zhou","doi":"10.2139/ssrn.3464257","DOIUrl":null,"url":null,"abstract":"Abstract. An investor initially shorts a divisible American option f and dynamically trades stock S to maximize her expected utility. The investor faces the uncertainty of the exercise time of f, yet by observing the exercise time she would adjust her dynamic trading strategy accordingly. We thus investigate the robust utility maximization problem V (x) = sup(H,c) infη E[U(x+H·S−c(η(f)−p))], where H is the dynamic trading strategy for S, c represents the amount of f the investor initially shorts, η is the liquidation strategy for f, and p is the initial price of f. We mainly consider two cases: In the first case the investor shorts a fixed amount of f, i.e., w.l.o.g., c = 1 and p = 0; in the second case she statically trades f, i.e., c can be any nonnegative number. \n \nWe first show that in both cases V (x) = sup(H,c) infτ E[U(x+H ·S−c(fτ −p))] = infρ sup(H,c) E[U(x + H · S − c(fρ − p))], where τ is a pure stopping time, ρ is a randomized stopping time, and H satisfies certain non-anticipation condition. Then in the first case (i.e., c = 1), we show that when U is exponential, V (x) = infτ supH E[U(x+H·S−fτ)]; for general utility this equality may fail, yet can be recovered if we in addition let τ be adapted to H in certain sense. Finally, in the second case (c ∈ [0,∞)) we obtain a duality result for the robust utility maximization on an enlarged space.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Utility Maximization When Shorting American Options\",\"authors\":\"Zhou Zhou\",\"doi\":\"10.2139/ssrn.3464257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. An investor initially shorts a divisible American option f and dynamically trades stock S to maximize her expected utility. The investor faces the uncertainty of the exercise time of f, yet by observing the exercise time she would adjust her dynamic trading strategy accordingly. We thus investigate the robust utility maximization problem V (x) = sup(H,c) infη E[U(x+H·S−c(η(f)−p))], where H is the dynamic trading strategy for S, c represents the amount of f the investor initially shorts, η is the liquidation strategy for f, and p is the initial price of f. We mainly consider two cases: In the first case the investor shorts a fixed amount of f, i.e., w.l.o.g., c = 1 and p = 0; in the second case she statically trades f, i.e., c can be any nonnegative number. \\n \\nWe first show that in both cases V (x) = sup(H,c) infτ E[U(x+H ·S−c(fτ −p))] = infρ sup(H,c) E[U(x + H · S − c(fρ − p))], where τ is a pure stopping time, ρ is a randomized stopping time, and H satisfies certain non-anticipation condition. Then in the first case (i.e., c = 1), we show that when U is exponential, V (x) = infτ supH E[U(x+H·S−fτ)]; for general utility this equality may fail, yet can be recovered if we in addition let τ be adapted to H in certain sense. Finally, in the second case (c ∈ [0,∞)) we obtain a duality result for the robust utility maximization on an enlarged space.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3464257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3464257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要投资者最初做空可除美式期权f并动态交易股票S以最大化其预期效用。投资者面临f行使时间的不确定性,但通过观察行使时间,投资者会相应地调整动态交易策略。因此,我们研究了稳健效用最大化问题V (x) = sup(H,c) infη E[U(x+H·S−c(η(f)−p))],其中H是S的动态交易策略,c表示投资者最初做空的f的数量,η是f的平仓策略,p是f的初始价格。我们主要考虑两种情况:第一种情况下,投资者做空固定数量的f,即w.l.o.g., c = 1, p = 0;在第二种情况下,她静态地交易f,即c可以是任何非负数。首先证明了在这两种情况下V (x) = sup(H,c) infτ E[U(x+H·S−c(fτ−p))] = infρ sup(H,c) E[U(x+H·S−c(fτ−p))],其中τ是一个纯停止时间,ρ是一个随机停止时间,H满足一定的非预期条件。然后在第一种情况下(即c = 1),我们证明了当U是指数时,V (x) = infτ supH E[U(x+H·S−fτ)];对于一般效用,这个等式可能失效,但如果我们另外让τ在某种意义上适应于H,则可以恢复。最后,在第二种情况(c∈[0,∞))下,我们得到了在扩大空间上鲁棒效用最大化的对偶结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utility Maximization When Shorting American Options
Abstract. An investor initially shorts a divisible American option f and dynamically trades stock S to maximize her expected utility. The investor faces the uncertainty of the exercise time of f, yet by observing the exercise time she would adjust her dynamic trading strategy accordingly. We thus investigate the robust utility maximization problem V (x) = sup(H,c) infη E[U(x+H·S−c(η(f)−p))], where H is the dynamic trading strategy for S, c represents the amount of f the investor initially shorts, η is the liquidation strategy for f, and p is the initial price of f. We mainly consider two cases: In the first case the investor shorts a fixed amount of f, i.e., w.l.o.g., c = 1 and p = 0; in the second case she statically trades f, i.e., c can be any nonnegative number. We first show that in both cases V (x) = sup(H,c) infτ E[U(x+H ·S−c(fτ −p))] = infρ sup(H,c) E[U(x + H · S − c(fρ − p))], where τ is a pure stopping time, ρ is a randomized stopping time, and H satisfies certain non-anticipation condition. Then in the first case (i.e., c = 1), we show that when U is exponential, V (x) = infτ supH E[U(x+H·S−fτ)]; for general utility this equality may fail, yet can be recovered if we in addition let τ be adapted to H in certain sense. Finally, in the second case (c ∈ [0,∞)) we obtain a duality result for the robust utility maximization on an enlarged space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信