基于NSGA-II的高阶不确定性多目标污染路径问题

Amit K. Shukla, Rahul Nath, Pranab K. Muhuri
{"title":"基于NSGA-II的高阶不确定性多目标污染路径问题","authors":"Amit K. Shukla, Rahul Nath, Pranab K. Muhuri","doi":"10.1109/FUZZ-IEEE.2017.8015668","DOIUrl":null,"url":null,"abstract":"Pollution routing problem (PRP) is an NP-hard multi-objective optimization problem. The main goal is pollution reduction and secondary goals are cost/distance minimization, profit maximization etc. We have considered two unique models with two different set of objectives viz. (i) distance and fuel consumption, and (ii) weighted load and fuel consumption. Here, system parameters like demand, driver wages, timing constraints etc. can't be predicted a-priori and involve multiple opinions from the designers. Thus, such uncertain system parameters can be modelled using fuzzy sets. As type-1 fuzzy sets (T1 FSs) has limitations in modelling higher order uncertainty, this paper models these uncertain parameters with interval type-2 fuzzy sets (IT2 FSs). We have solved the problem by an efficient multi-objective evolutionary algorithm viz. NSGA-II (non-dominated sorting genetic algorithm-II). Numerical examples demonstrate the efficiency of the proposed technique over existing (crisp and type-1 fuzzy set based) approaches.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"NSGA-II based multi-objective pollution routing problem with higher order uncertainty\",\"authors\":\"Amit K. Shukla, Rahul Nath, Pranab K. Muhuri\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pollution routing problem (PRP) is an NP-hard multi-objective optimization problem. The main goal is pollution reduction and secondary goals are cost/distance minimization, profit maximization etc. We have considered two unique models with two different set of objectives viz. (i) distance and fuel consumption, and (ii) weighted load and fuel consumption. Here, system parameters like demand, driver wages, timing constraints etc. can't be predicted a-priori and involve multiple opinions from the designers. Thus, such uncertain system parameters can be modelled using fuzzy sets. As type-1 fuzzy sets (T1 FSs) has limitations in modelling higher order uncertainty, this paper models these uncertain parameters with interval type-2 fuzzy sets (IT2 FSs). We have solved the problem by an efficient multi-objective evolutionary algorithm viz. NSGA-II (non-dominated sorting genetic algorithm-II). Numerical examples demonstrate the efficiency of the proposed technique over existing (crisp and type-1 fuzzy set based) approaches.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

污染路径问题(PRP)是一个NP-hard多目标优化问题。主要目标是减少污染,次要目标是成本/距离最小化,利润最大化等。我们考虑了两个独特的模型,它们具有两组不同的目标,即(i)距离和燃料消耗,以及(ii)加权负载和燃料消耗。在这里,需求、司机工资、时间限制等系统参数无法先验地预测,并且涉及来自设计师的多种意见。因此,这种不确定的系统参数可以用模糊集来建模。由于1型模糊集(T1模糊集)在建模高阶不确定性方面存在局限性,本文采用区间2型模糊集(IT2模糊集)对这些不确定性参数进行建模。我们用一种高效的多目标进化算法NSGA-II (non- dominant sorting genetic algorithm- ii)解决了这一问题。数值算例表明,该方法比现有的(基于清晰和1型模糊集的)方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NSGA-II based multi-objective pollution routing problem with higher order uncertainty
Pollution routing problem (PRP) is an NP-hard multi-objective optimization problem. The main goal is pollution reduction and secondary goals are cost/distance minimization, profit maximization etc. We have considered two unique models with two different set of objectives viz. (i) distance and fuel consumption, and (ii) weighted load and fuel consumption. Here, system parameters like demand, driver wages, timing constraints etc. can't be predicted a-priori and involve multiple opinions from the designers. Thus, such uncertain system parameters can be modelled using fuzzy sets. As type-1 fuzzy sets (T1 FSs) has limitations in modelling higher order uncertainty, this paper models these uncertain parameters with interval type-2 fuzzy sets (IT2 FSs). We have solved the problem by an efficient multi-objective evolutionary algorithm viz. NSGA-II (non-dominated sorting genetic algorithm-II). Numerical examples demonstrate the efficiency of the proposed technique over existing (crisp and type-1 fuzzy set based) approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信