{"title":"用于医疗应用的新型生物传感装置监测泪糖的软性隐形眼镜传感器","authors":"K. Mitsubayashi","doi":"10.1109/SISPAD.2014.6931635","DOIUrl":null,"url":null,"abstract":"A soft contact-lens amperometric glucose sensor as novel non-invasive device of body sensor network was fabricated and tested. Also, the sensor was utilized to tear glucose monitoring. The sensor was constructed by immobilizing GOD onto a flexible oxygen electrode, which was fabricated using “Soft-MEMS” techniques onto a functional polymer membrane. In purpose of bioinstrumentation, adhesive agents were not used for constructing the flexible biosensor. Linear relationship between glucose concentration and output current was obtained in a range of 0.039-0.537 mmol/l. Current dependences on pH and temperature were also evaluated. The current was largest at pH 7.0 and the current increased when temperature increased. This indicates that the output current depends on enzyme activity. Based on the basic characteristics investigation, the glucose sensor was applied to measurement of glucose in tear fluids on an eye site of a Japan white rabbit. The change of tear glucose level induced by oral-administration of glucose was monitored as a current change of the sensor attached on the eye site. In this investigation, the tear glucose level varied from 0.2 mmol/l to 0.5 mmol/l. Although there was a delay of several tens of minutes towards blood sugar level, it is considered to be possible that non-invasive continuous glucose monitoring can be realized using the flexible biosensor.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Novel biosensing devices for medical applications Soft contact-lens sensors for monitoring tear sugar\",\"authors\":\"K. Mitsubayashi\",\"doi\":\"10.1109/SISPAD.2014.6931635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A soft contact-lens amperometric glucose sensor as novel non-invasive device of body sensor network was fabricated and tested. Also, the sensor was utilized to tear glucose monitoring. The sensor was constructed by immobilizing GOD onto a flexible oxygen electrode, which was fabricated using “Soft-MEMS” techniques onto a functional polymer membrane. In purpose of bioinstrumentation, adhesive agents were not used for constructing the flexible biosensor. Linear relationship between glucose concentration and output current was obtained in a range of 0.039-0.537 mmol/l. Current dependences on pH and temperature were also evaluated. The current was largest at pH 7.0 and the current increased when temperature increased. This indicates that the output current depends on enzyme activity. Based on the basic characteristics investigation, the glucose sensor was applied to measurement of glucose in tear fluids on an eye site of a Japan white rabbit. The change of tear glucose level induced by oral-administration of glucose was monitored as a current change of the sensor attached on the eye site. In this investigation, the tear glucose level varied from 0.2 mmol/l to 0.5 mmol/l. Although there was a delay of several tens of minutes towards blood sugar level, it is considered to be possible that non-invasive continuous glucose monitoring can be realized using the flexible biosensor.\",\"PeriodicalId\":101858,\"journal\":{\"name\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2014.6931635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel biosensing devices for medical applications Soft contact-lens sensors for monitoring tear sugar
A soft contact-lens amperometric glucose sensor as novel non-invasive device of body sensor network was fabricated and tested. Also, the sensor was utilized to tear glucose monitoring. The sensor was constructed by immobilizing GOD onto a flexible oxygen electrode, which was fabricated using “Soft-MEMS” techniques onto a functional polymer membrane. In purpose of bioinstrumentation, adhesive agents were not used for constructing the flexible biosensor. Linear relationship between glucose concentration and output current was obtained in a range of 0.039-0.537 mmol/l. Current dependences on pH and temperature were also evaluated. The current was largest at pH 7.0 and the current increased when temperature increased. This indicates that the output current depends on enzyme activity. Based on the basic characteristics investigation, the glucose sensor was applied to measurement of glucose in tear fluids on an eye site of a Japan white rabbit. The change of tear glucose level induced by oral-administration of glucose was monitored as a current change of the sensor attached on the eye site. In this investigation, the tear glucose level varied from 0.2 mmol/l to 0.5 mmol/l. Although there was a delay of several tens of minutes towards blood sugar level, it is considered to be possible that non-invasive continuous glucose monitoring can be realized using the flexible biosensor.