Guangqi Jiang, Huibing Wang, Jinjia Peng, Xianping Fu
{"title":"基于局部感知互相关变压器的车辆再识别并行网络","authors":"Guangqi Jiang, Huibing Wang, Jinjia Peng, Xianping Fu","doi":"10.1145/3512527.3531412","DOIUrl":null,"url":null,"abstract":"Vehicle re-identification (ReID) aims to identify a specific vehicle in the dataset captured by non-overlapping cameras, which plays a great significant role in the development of intelligent transportation systems. Even though CNN-based model achieves impressive performance for the ReID task, its Gaussian distribution of effective receptive fields has limitations in capturing the long-term dependence between features. Moreover, it is crucial to capture fine-grained features and the relationship between features as much as possible from vehicle images. To address those problems, we propose a partial-aware and cross-correlated transformer model (PCTM), which adopts the parallelism network extracting discriminant features to optimize the feature representation for vehicle ReID. PCTM includes a cross-correlation transformer branch that fuses the features extracted based on the transformer module and feature guidance module, which guides the network to capture the long-term dependence of key features. In this way, the feature guidance module promotes the transformer-based features to focus on the vehicle itself and avoid the interference of excessive background for feature extraction. Moreover, PCTM introduced a partial-aware structure in the second branch to explore fine-grained information from vehicle images for capturing local differences from different vehicles. Furthermore, we conducted experiments on 2 vehicle datasets to verify the performance of PCTM.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallelism Network with Partial-aware and Cross-correlated Transformer for Vehicle Re-identification\",\"authors\":\"Guangqi Jiang, Huibing Wang, Jinjia Peng, Xianping Fu\",\"doi\":\"10.1145/3512527.3531412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle re-identification (ReID) aims to identify a specific vehicle in the dataset captured by non-overlapping cameras, which plays a great significant role in the development of intelligent transportation systems. Even though CNN-based model achieves impressive performance for the ReID task, its Gaussian distribution of effective receptive fields has limitations in capturing the long-term dependence between features. Moreover, it is crucial to capture fine-grained features and the relationship between features as much as possible from vehicle images. To address those problems, we propose a partial-aware and cross-correlated transformer model (PCTM), which adopts the parallelism network extracting discriminant features to optimize the feature representation for vehicle ReID. PCTM includes a cross-correlation transformer branch that fuses the features extracted based on the transformer module and feature guidance module, which guides the network to capture the long-term dependence of key features. In this way, the feature guidance module promotes the transformer-based features to focus on the vehicle itself and avoid the interference of excessive background for feature extraction. Moreover, PCTM introduced a partial-aware structure in the second branch to explore fine-grained information from vehicle images for capturing local differences from different vehicles. Furthermore, we conducted experiments on 2 vehicle datasets to verify the performance of PCTM.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallelism Network with Partial-aware and Cross-correlated Transformer for Vehicle Re-identification
Vehicle re-identification (ReID) aims to identify a specific vehicle in the dataset captured by non-overlapping cameras, which plays a great significant role in the development of intelligent transportation systems. Even though CNN-based model achieves impressive performance for the ReID task, its Gaussian distribution of effective receptive fields has limitations in capturing the long-term dependence between features. Moreover, it is crucial to capture fine-grained features and the relationship between features as much as possible from vehicle images. To address those problems, we propose a partial-aware and cross-correlated transformer model (PCTM), which adopts the parallelism network extracting discriminant features to optimize the feature representation for vehicle ReID. PCTM includes a cross-correlation transformer branch that fuses the features extracted based on the transformer module and feature guidance module, which guides the network to capture the long-term dependence of key features. In this way, the feature guidance module promotes the transformer-based features to focus on the vehicle itself and avoid the interference of excessive background for feature extraction. Moreover, PCTM introduced a partial-aware structure in the second branch to explore fine-grained information from vehicle images for capturing local differences from different vehicles. Furthermore, we conducted experiments on 2 vehicle datasets to verify the performance of PCTM.