{"title":"缓解图异常检测中的结构分布偏移","authors":"Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, Yongdong Zhang","doi":"10.1145/3539597.3570377","DOIUrl":null,"url":null,"abstract":"Graph anomaly detection (GAD) is a challenging binary classification problem due to its different structural distribution between anomalies and normal nodes --- abnormal nodes are a minority, therefore holding high heterophily and low homophily compared to normal nodes. Furthermore, due to various time factors and the annotation preferences of human experts, the heterophily and homophily can change across training and testing data, which is called structural distribution shift (SDS) in this paper. The mainstream methods are built on graph neural networks (GNNs), benefiting the classification of normals from aggregating homophilous neighbors, yet ignoring the SDS issue for anomalies and suffering from poor generalization. This work solves the problem from a feature view. We observe that the degree of SDS varies between anomalies and normal nodes. Hence to address the issue, the key lies in resisting high heterophily for anomalies meanwhile benefiting the learning of normals from homophily. Since different labels correspond to the difference of critical anomaly features which make great contributions to the GAD, we tease out the anomaly features on which we constrain to mitigate the effect of heterophilous neighbors and make them invariant. However, the prior distribution of anomaly features is dynamic and hard to estimate, we thus devise a prototype vector to infer and update this distribution during training. For normal nodes, we constrain the remaining features to preserve the connectivity of nodes and reinforce the influence of the homophilous neighborhood. We term our proposed framework asGraph Decomposition Network (GDN). Extensive experiments are conducted on two benchmark datasets, and the proposed framework achieves a remarkable performance boost in GAD, especially in an SDS environment where anomalies have largely different structural distribution across training and testing environments. Codes are open-sourced in https://github.com/blacksingular/wsdm_GDN.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Alleviating Structural Distribution Shift in Graph Anomaly Detection\",\"authors\":\"Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, Yongdong Zhang\",\"doi\":\"10.1145/3539597.3570377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph anomaly detection (GAD) is a challenging binary classification problem due to its different structural distribution between anomalies and normal nodes --- abnormal nodes are a minority, therefore holding high heterophily and low homophily compared to normal nodes. Furthermore, due to various time factors and the annotation preferences of human experts, the heterophily and homophily can change across training and testing data, which is called structural distribution shift (SDS) in this paper. The mainstream methods are built on graph neural networks (GNNs), benefiting the classification of normals from aggregating homophilous neighbors, yet ignoring the SDS issue for anomalies and suffering from poor generalization. This work solves the problem from a feature view. We observe that the degree of SDS varies between anomalies and normal nodes. Hence to address the issue, the key lies in resisting high heterophily for anomalies meanwhile benefiting the learning of normals from homophily. Since different labels correspond to the difference of critical anomaly features which make great contributions to the GAD, we tease out the anomaly features on which we constrain to mitigate the effect of heterophilous neighbors and make them invariant. However, the prior distribution of anomaly features is dynamic and hard to estimate, we thus devise a prototype vector to infer and update this distribution during training. For normal nodes, we constrain the remaining features to preserve the connectivity of nodes and reinforce the influence of the homophilous neighborhood. We term our proposed framework asGraph Decomposition Network (GDN). Extensive experiments are conducted on two benchmark datasets, and the proposed framework achieves a remarkable performance boost in GAD, especially in an SDS environment where anomalies have largely different structural distribution across training and testing environments. Codes are open-sourced in https://github.com/blacksingular/wsdm_GDN.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3570377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alleviating Structural Distribution Shift in Graph Anomaly Detection
Graph anomaly detection (GAD) is a challenging binary classification problem due to its different structural distribution between anomalies and normal nodes --- abnormal nodes are a minority, therefore holding high heterophily and low homophily compared to normal nodes. Furthermore, due to various time factors and the annotation preferences of human experts, the heterophily and homophily can change across training and testing data, which is called structural distribution shift (SDS) in this paper. The mainstream methods are built on graph neural networks (GNNs), benefiting the classification of normals from aggregating homophilous neighbors, yet ignoring the SDS issue for anomalies and suffering from poor generalization. This work solves the problem from a feature view. We observe that the degree of SDS varies between anomalies and normal nodes. Hence to address the issue, the key lies in resisting high heterophily for anomalies meanwhile benefiting the learning of normals from homophily. Since different labels correspond to the difference of critical anomaly features which make great contributions to the GAD, we tease out the anomaly features on which we constrain to mitigate the effect of heterophilous neighbors and make them invariant. However, the prior distribution of anomaly features is dynamic and hard to estimate, we thus devise a prototype vector to infer and update this distribution during training. For normal nodes, we constrain the remaining features to preserve the connectivity of nodes and reinforce the influence of the homophilous neighborhood. We term our proposed framework asGraph Decomposition Network (GDN). Extensive experiments are conducted on two benchmark datasets, and the proposed framework achieves a remarkable performance boost in GAD, especially in an SDS environment where anomalies have largely different structural distribution across training and testing environments. Codes are open-sourced in https://github.com/blacksingular/wsdm_GDN.