并行x射线光子相关光谱学软件工具,使用python进行多处理

Sameera K. Abeykoon, Meifeng Lin, K. K. van Dam
{"title":"并行x射线光子相关光谱学软件工具,使用python进行多处理","authors":"Sameera K. Abeykoon, Meifeng Lin, K. K. van Dam","doi":"10.1109/NYSDS.2017.8085042","DOIUrl":null,"url":null,"abstract":"The third generation synchrotron facilities that are designed to deliver highly intense and bright X-ray beams along with the new area detectors capable of achieving high dynamic ratios and fast frame rates have enabled novel Coherent X-ray scattering experiments. X-ray Photon Correlation Spectroscopy is such a technique that measures nano- and mesoscale dynamics in materials. The scikit-beam Python analysis library developed at the National Synchrotron Light Source-II at Brookhaven National Laboratory contains a serial version of Xray Photon Correlation Spectroscopy software tools to perform streaming analysis of structural dynamics of materials, which can be time consuming given the anticipated fast data rates and high image resolutions at the National Synchrotron Light Source-II. Therefore, it is essential to parallelize these data analysis tools to achieve the best performance on the available workstations that contain multi-core processors. In this paper, we report the progress that we have made in using the Python multiprocessing module to parallelize the time-correlation functions in scikit-beam. We will compare the results from different multiprocessing approaches, and discuss pros and cons associated with each method.","PeriodicalId":380859,"journal":{"name":"2017 New York Scientific Data Summit (NYSDS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallelizing x-ray photon correlation spectroscopy software tools using python multiprocessing\",\"authors\":\"Sameera K. Abeykoon, Meifeng Lin, K. K. van Dam\",\"doi\":\"10.1109/NYSDS.2017.8085042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The third generation synchrotron facilities that are designed to deliver highly intense and bright X-ray beams along with the new area detectors capable of achieving high dynamic ratios and fast frame rates have enabled novel Coherent X-ray scattering experiments. X-ray Photon Correlation Spectroscopy is such a technique that measures nano- and mesoscale dynamics in materials. The scikit-beam Python analysis library developed at the National Synchrotron Light Source-II at Brookhaven National Laboratory contains a serial version of Xray Photon Correlation Spectroscopy software tools to perform streaming analysis of structural dynamics of materials, which can be time consuming given the anticipated fast data rates and high image resolutions at the National Synchrotron Light Source-II. Therefore, it is essential to parallelize these data analysis tools to achieve the best performance on the available workstations that contain multi-core processors. In this paper, we report the progress that we have made in using the Python multiprocessing module to parallelize the time-correlation functions in scikit-beam. We will compare the results from different multiprocessing approaches, and discuss pros and cons associated with each method.\",\"PeriodicalId\":380859,\"journal\":{\"name\":\"2017 New York Scientific Data Summit (NYSDS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 New York Scientific Data Summit (NYSDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NYSDS.2017.8085042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 New York Scientific Data Summit (NYSDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NYSDS.2017.8085042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

第三代同步加速器设施旨在提供高强度和明亮的x射线光束,以及能够实现高动态比和快速帧速率的新区域探测器,使新的相干x射线散射实验成为可能。x射线光子相关光谱学是一种测量材料纳米尺度和中尺度动力学的技术。在布鲁克海文国家实验室的国家同步加速器光源ii开发的scikit-beam Python分析库包含一个串行版本的x射线光子相关光谱软件工具,用于执行材料结构动力学的流分析,考虑到国家同步加速器光源ii预期的快速数据速率和高图像分辨率,这可能会很耗时。因此,必须并行化这些数据分析工具,以便在包含多核处理器的可用工作站上实现最佳性能。在本文中,我们报告了使用Python多处理模块并行化scikit-beam中的时间相关函数所取得的进展。我们将比较不同多处理方法的结果,并讨论与每种方法相关的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelizing x-ray photon correlation spectroscopy software tools using python multiprocessing
The third generation synchrotron facilities that are designed to deliver highly intense and bright X-ray beams along with the new area detectors capable of achieving high dynamic ratios and fast frame rates have enabled novel Coherent X-ray scattering experiments. X-ray Photon Correlation Spectroscopy is such a technique that measures nano- and mesoscale dynamics in materials. The scikit-beam Python analysis library developed at the National Synchrotron Light Source-II at Brookhaven National Laboratory contains a serial version of Xray Photon Correlation Spectroscopy software tools to perform streaming analysis of structural dynamics of materials, which can be time consuming given the anticipated fast data rates and high image resolutions at the National Synchrotron Light Source-II. Therefore, it is essential to parallelize these data analysis tools to achieve the best performance on the available workstations that contain multi-core processors. In this paper, we report the progress that we have made in using the Python multiprocessing module to parallelize the time-correlation functions in scikit-beam. We will compare the results from different multiprocessing approaches, and discuss pros and cons associated with each method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信