基于自定义复值卷积神经网络的广义空间调制系统快速检测

Akram Marseet, Taissir Y. Elganimi
{"title":"基于自定义复值卷积神经网络的广义空间调制系统快速检测","authors":"Akram Marseet, Taissir Y. Elganimi","doi":"10.1109/WNYIPW.2019.8923057","DOIUrl":null,"url":null,"abstract":"In this paper, a customized Auto-Encoder Complex Valued Convolutional Neural Network (AE-CV-CNN) that has been developed in a prior work is applied to Single Symbol Generalized Spatial Modulation (SS-GSM) scheme with new extracted features. The achieved reductions in the computational complexity at the receiver is at least 63.64% for M-PSK schemes compared to the complexity of Maximum Likelihood (ML) detection algorithm. This Fast detection algorithm is based on a proposed Low Complexity ML (LC-ML) detector that affords a complexity reduction of at least 40.91%. With these proposed algorithms, the complexity is reduced as the spatial constellation size increases. Furthermore, in comparison to other sub optimal detection algorithms, the computational complexity in terms of real valued multiplications of the AE-CV-CNN applied to LC-ML is independent of the spatial spectrum efficiency which means that the total spectrum efficiency increases with larger spatial constellation size at no additional complexity.","PeriodicalId":275099,"journal":{"name":"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Detection Based on Customized Complex Valued Convolutional Neural Network for Generalized Spatial Modulation Systems\",\"authors\":\"Akram Marseet, Taissir Y. Elganimi\",\"doi\":\"10.1109/WNYIPW.2019.8923057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a customized Auto-Encoder Complex Valued Convolutional Neural Network (AE-CV-CNN) that has been developed in a prior work is applied to Single Symbol Generalized Spatial Modulation (SS-GSM) scheme with new extracted features. The achieved reductions in the computational complexity at the receiver is at least 63.64% for M-PSK schemes compared to the complexity of Maximum Likelihood (ML) detection algorithm. This Fast detection algorithm is based on a proposed Low Complexity ML (LC-ML) detector that affords a complexity reduction of at least 40.91%. With these proposed algorithms, the complexity is reduced as the spatial constellation size increases. Furthermore, in comparison to other sub optimal detection algorithms, the computational complexity in terms of real valued multiplications of the AE-CV-CNN applied to LC-ML is independent of the spatial spectrum efficiency which means that the total spectrum efficiency increases with larger spatial constellation size at no additional complexity.\",\"PeriodicalId\":275099,\"journal\":{\"name\":\"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2019.8923057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2019.8923057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将前人开发的自定义自编码器复值卷积神经网络(AE-CV-CNN)应用于具有新提取特征的单符号广义空间调制(SS-GSM)方案。与最大似然(ML)检测算法相比,M-PSK方案在接收端的计算复杂度至少降低了63.64%。这种快速检测算法基于一种提出的低复杂度机器学习(LC-ML)检测器,该检测器可将复杂性降低至少40.91%。这些算法的复杂度随着星座空间大小的增加而降低。此外,与其他次优检测算法相比,应用于LC-ML的AE-CV-CNN的实值乘法计算复杂度与空间频谱效率无关,即在不增加复杂度的情况下,总频谱效率随着空间星座规模的增大而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Detection Based on Customized Complex Valued Convolutional Neural Network for Generalized Spatial Modulation Systems
In this paper, a customized Auto-Encoder Complex Valued Convolutional Neural Network (AE-CV-CNN) that has been developed in a prior work is applied to Single Symbol Generalized Spatial Modulation (SS-GSM) scheme with new extracted features. The achieved reductions in the computational complexity at the receiver is at least 63.64% for M-PSK schemes compared to the complexity of Maximum Likelihood (ML) detection algorithm. This Fast detection algorithm is based on a proposed Low Complexity ML (LC-ML) detector that affords a complexity reduction of at least 40.91%. With these proposed algorithms, the complexity is reduced as the spatial constellation size increases. Furthermore, in comparison to other sub optimal detection algorithms, the computational complexity in terms of real valued multiplications of the AE-CV-CNN applied to LC-ML is independent of the spatial spectrum efficiency which means that the total spectrum efficiency increases with larger spatial constellation size at no additional complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信