{"title":"基于深度lstm的递归神经网络的社会信号分类","authors":"Himanshu Joshi, Ananya Verma, Amrita Mishra","doi":"10.1109/SPCOM50965.2020.9179516","DOIUrl":null,"url":null,"abstract":"Non-linguistic speech cues aid expression of various emotions in human communication. In this work, we demonstrate the application of deep long short-term memory (LSTM) recurrent neural networks for frame-wise detection and classification of laughter and filler vocalizations in speech data. Further, we propose a novel approach to perform classification by incorporating cluster information as an additional feature wherein the clusters in the dataset are extracted via a k-means clustering algorithm. Extensive simulation results demonstrate that the proposed approach achieves significant improvement over the conventional LSTM-based classification methods. Also, the performance of deep LSTM models obtained by stacking LSTMs, is studied. Lastly, for classification of the temporally correlated speech data considered in this work, a comparison with popular machine learning-based techniques validates the superiority of the proposed LSTM-based scheme.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification of Social Signals Using Deep LSTM-based Recurrent Neural Networks\",\"authors\":\"Himanshu Joshi, Ananya Verma, Amrita Mishra\",\"doi\":\"10.1109/SPCOM50965.2020.9179516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-linguistic speech cues aid expression of various emotions in human communication. In this work, we demonstrate the application of deep long short-term memory (LSTM) recurrent neural networks for frame-wise detection and classification of laughter and filler vocalizations in speech data. Further, we propose a novel approach to perform classification by incorporating cluster information as an additional feature wherein the clusters in the dataset are extracted via a k-means clustering algorithm. Extensive simulation results demonstrate that the proposed approach achieves significant improvement over the conventional LSTM-based classification methods. Also, the performance of deep LSTM models obtained by stacking LSTMs, is studied. Lastly, for classification of the temporally correlated speech data considered in this work, a comparison with popular machine learning-based techniques validates the superiority of the proposed LSTM-based scheme.\",\"PeriodicalId\":208527,\"journal\":{\"name\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM50965.2020.9179516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Social Signals Using Deep LSTM-based Recurrent Neural Networks
Non-linguistic speech cues aid expression of various emotions in human communication. In this work, we demonstrate the application of deep long short-term memory (LSTM) recurrent neural networks for frame-wise detection and classification of laughter and filler vocalizations in speech data. Further, we propose a novel approach to perform classification by incorporating cluster information as an additional feature wherein the clusters in the dataset are extracted via a k-means clustering algorithm. Extensive simulation results demonstrate that the proposed approach achieves significant improvement over the conventional LSTM-based classification methods. Also, the performance of deep LSTM models obtained by stacking LSTMs, is studied. Lastly, for classification of the temporally correlated speech data considered in this work, a comparison with popular machine learning-based techniques validates the superiority of the proposed LSTM-based scheme.