使用生成地形图的垂直协同聚类

Jérémie Sublime, Nistor Grozavu, Younès Bennani, A. Cornuéjols
{"title":"使用生成地形图的垂直协同聚类","authors":"Jérémie Sublime, Nistor Grozavu, Younès Bennani, A. Cornuéjols","doi":"10.1109/SOCPAR.2015.7492807","DOIUrl":null,"url":null,"abstract":"Collaborative clustering is a recent field of Machine Learning that shows similarities with both transfer learning and ensemble learning. It uses two-step approaches where different clustering algorithms first process data individually and then exchange their information and results with a goal of mutual improvement. In this article, we introduce a new collaborative learning approach based on collaborative clustering principles and applied to the Generative Topographic Mapping (GTM) algorithm. Our method consists in applying the GTM algorithm on different data sets where similar clusters can be found (same feature spaces and similar data distributions), and then to use a collaborative framework on the generated maps with the goal of transferring knowledge between them. The proposed approach has been validated on several data sets, and the experimental results have shown very promising performances.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Vertical collaborative clustering using generative topographic maps\",\"authors\":\"Jérémie Sublime, Nistor Grozavu, Younès Bennani, A. Cornuéjols\",\"doi\":\"10.1109/SOCPAR.2015.7492807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative clustering is a recent field of Machine Learning that shows similarities with both transfer learning and ensemble learning. It uses two-step approaches where different clustering algorithms first process data individually and then exchange their information and results with a goal of mutual improvement. In this article, we introduce a new collaborative learning approach based on collaborative clustering principles and applied to the Generative Topographic Mapping (GTM) algorithm. Our method consists in applying the GTM algorithm on different data sets where similar clusters can be found (same feature spaces and similar data distributions), and then to use a collaborative framework on the generated maps with the goal of transferring knowledge between them. The proposed approach has been validated on several data sets, and the experimental results have shown very promising performances.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

协同聚类是机器学习的一个新领域,它与迁移学习和集成学习都有相似之处。它使用两步方法,其中不同的聚类算法首先单独处理数据,然后以相互改进为目标交换它们的信息和结果。本文介绍了一种基于协同聚类原理的新型协同学习方法,并将其应用于生成式地形映射(GTM)算法。我们的方法是在不同的数据集上应用GTM算法,其中可以找到相似的聚类(相同的特征空间和相似的数据分布),然后在生成的地图上使用协作框架,目标是在它们之间传递知识。该方法已在多个数据集上进行了验证,实验结果显示了非常理想的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertical collaborative clustering using generative topographic maps
Collaborative clustering is a recent field of Machine Learning that shows similarities with both transfer learning and ensemble learning. It uses two-step approaches where different clustering algorithms first process data individually and then exchange their information and results with a goal of mutual improvement. In this article, we introduce a new collaborative learning approach based on collaborative clustering principles and applied to the Generative Topographic Mapping (GTM) algorithm. Our method consists in applying the GTM algorithm on different data sets where similar clusters can be found (same feature spaces and similar data distributions), and then to use a collaborative framework on the generated maps with the goal of transferring knowledge between them. The proposed approach has been validated on several data sets, and the experimental results have shown very promising performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信