视频流中人脸的鲁棒实时检测、跟踪和姿态估计

Kohsia S. Huang, M. Trivedi
{"title":"视频流中人脸的鲁棒实时检测、跟踪和姿态估计","authors":"Kohsia S. Huang, M. Trivedi","doi":"10.1109/ICPR.2004.1334689","DOIUrl":null,"url":null,"abstract":"Robust human face analysis has been recognized as a crucial part in intelligent systems. In this paper, we present the development of a computational framework for robust detection, tracking, and pose estimation of faces captured by video arrays. We discuss the development of a multi-primitive skin-tone and edge-based detection module embedded in a tracking module for efficient and robust face detection and tracking. A continuous density HMM based pose estimation is developed for an accurate estimate of the face orientation motions. Experimental evaluations of these algorithms suggest the validity of the proposed framework and its computational modules.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Robust real-time detection, tracking, and pose estimation of faces in video streams\",\"authors\":\"Kohsia S. Huang, M. Trivedi\",\"doi\":\"10.1109/ICPR.2004.1334689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust human face analysis has been recognized as a crucial part in intelligent systems. In this paper, we present the development of a computational framework for robust detection, tracking, and pose estimation of faces captured by video arrays. We discuss the development of a multi-primitive skin-tone and edge-based detection module embedded in a tracking module for efficient and robust face detection and tracking. A continuous density HMM based pose estimation is developed for an accurate estimate of the face orientation motions. Experimental evaluations of these algorithms suggest the validity of the proposed framework and its computational modules.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

鲁棒人脸分析已被认为是智能系统的重要组成部分。在本文中,我们提出了一个计算框架的发展,用于视频阵列捕获的人脸的鲁棒检测,跟踪和姿态估计。我们讨论了一种嵌入在跟踪模块中的多原始肤色和基于边缘的检测模块的开发,以实现高效和鲁棒的人脸检测和跟踪。为了准确估计人脸方向运动,提出了一种基于连续密度HMM的姿态估计方法。这些算法的实验评估表明了所提出的框架及其计算模块的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust real-time detection, tracking, and pose estimation of faces in video streams
Robust human face analysis has been recognized as a crucial part in intelligent systems. In this paper, we present the development of a computational framework for robust detection, tracking, and pose estimation of faces captured by video arrays. We discuss the development of a multi-primitive skin-tone and edge-based detection module embedded in a tracking module for efficient and robust face detection and tracking. A continuous density HMM based pose estimation is developed for an accurate estimate of the face orientation motions. Experimental evaluations of these algorithms suggest the validity of the proposed framework and its computational modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信