基于概念上下文的混合语义相似距离度量用于地理空间信息检索

K. Saruladha, E. Thirumagal, G. Aghila
{"title":"基于概念上下文的混合语义相似距离度量用于地理空间信息检索","authors":"K. Saruladha, E. Thirumagal, G. Aghila","doi":"10.1109/ICRTIT.2013.6844175","DOIUrl":null,"url":null,"abstract":"As the syntax based information retrieval yields very low precision, the researchers are moving to the semantic based information retrieval. The great challenge of the information retrieval system is to retrieve the related relevant information from the heterogeneous web resources. This paper aims for the retrieval of the relevant geo-spatial concepts from the geo-spatial ontology which aids application in quality testing of water and flood prediction. In the geo-spatial concept space, the retrieval of relevant geo-spatial concepts depends on the distance separating the two geo-spatial concepts and the context of the concepts. Research in geo-spatial information retrieval has used either the semantic distance between the geo-spatial concepts or the context of the concepts for computing the relevancy. This paper proposes HCC (Hybrid Conceptual Context) algorithm which aims at retrieving relevant geo-spatial concepts by considering both the semantic distance and the context on which the concepts occur in the geo-spatial space. This work computes the semantic similarity by measuring the semantic distance using Euclidean and Manhattan distance measure. This computation is carried out in two steps such as retrieval of semantically similar geo-spatial concepts and the retrieval of context dependent geo-spatial concepts. Semantic similarity computation in HCC algorithm retrieves contextually and semantically similar relevant geo-spatial concepts using Euclidean distance and Manhattan distance measures. Experiments have been done using Ordnance Survey Master Map datasource and geo-spatial ontology. The precision and recall show Manhattan based semantic similarity computation improves relevancy by 10%.","PeriodicalId":113531,"journal":{"name":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid semantic similarity distance measures using conceptual contexts for geospatial information retrieval\",\"authors\":\"K. Saruladha, E. Thirumagal, G. Aghila\",\"doi\":\"10.1109/ICRTIT.2013.6844175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the syntax based information retrieval yields very low precision, the researchers are moving to the semantic based information retrieval. The great challenge of the information retrieval system is to retrieve the related relevant information from the heterogeneous web resources. This paper aims for the retrieval of the relevant geo-spatial concepts from the geo-spatial ontology which aids application in quality testing of water and flood prediction. In the geo-spatial concept space, the retrieval of relevant geo-spatial concepts depends on the distance separating the two geo-spatial concepts and the context of the concepts. Research in geo-spatial information retrieval has used either the semantic distance between the geo-spatial concepts or the context of the concepts for computing the relevancy. This paper proposes HCC (Hybrid Conceptual Context) algorithm which aims at retrieving relevant geo-spatial concepts by considering both the semantic distance and the context on which the concepts occur in the geo-spatial space. This work computes the semantic similarity by measuring the semantic distance using Euclidean and Manhattan distance measure. This computation is carried out in two steps such as retrieval of semantically similar geo-spatial concepts and the retrieval of context dependent geo-spatial concepts. Semantic similarity computation in HCC algorithm retrieves contextually and semantically similar relevant geo-spatial concepts using Euclidean distance and Manhattan distance measures. Experiments have been done using Ordnance Survey Master Map datasource and geo-spatial ontology. The precision and recall show Manhattan based semantic similarity computation improves relevancy by 10%.\",\"PeriodicalId\":113531,\"journal\":{\"name\":\"2013 International Conference on Recent Trends in Information Technology (ICRTIT)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Recent Trends in Information Technology (ICRTIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2013.6844175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2013.6844175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于基于语法的信息检索精度较低,研究人员开始转向基于语义的信息检索。从异构的网络资源中检索相关的信息是信息检索系统面临的巨大挑战。本文旨在从地理空间本体论中检索相关的地理空间概念,以帮助在水质检测和洪水预测中的应用。在地理空间概念空间中,相关地理空间概念的检索取决于两个地理空间概念之间的距离和概念的上下文。地理空间信息检索的研究要么使用地理空间概念之间的语义距离,要么使用地理空间概念的上下文来计算相关性。本文提出了HCC (Hybrid Conceptual Context)算法,该算法通过考虑语义距离和概念在地理空间中出现的上下文来检索相关的地理空间概念。本文采用欧几里得和曼哈顿距离度量方法,通过测量语义距离来计算语义相似度。该计算分语义相似的地理空间概念检索和上下文相关的地理空间概念检索两个步骤进行。HCC算法中的语义相似度计算使用欧几里得距离和曼哈顿距离度量来检索上下文和语义相似的相关地理空间概念。利用地形测量总图数据源和地理空间本体进行了实验研究。精度和召回率表明,基于Manhattan的语义相似度计算将相关度提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid semantic similarity distance measures using conceptual contexts for geospatial information retrieval
As the syntax based information retrieval yields very low precision, the researchers are moving to the semantic based information retrieval. The great challenge of the information retrieval system is to retrieve the related relevant information from the heterogeneous web resources. This paper aims for the retrieval of the relevant geo-spatial concepts from the geo-spatial ontology which aids application in quality testing of water and flood prediction. In the geo-spatial concept space, the retrieval of relevant geo-spatial concepts depends on the distance separating the two geo-spatial concepts and the context of the concepts. Research in geo-spatial information retrieval has used either the semantic distance between the geo-spatial concepts or the context of the concepts for computing the relevancy. This paper proposes HCC (Hybrid Conceptual Context) algorithm which aims at retrieving relevant geo-spatial concepts by considering both the semantic distance and the context on which the concepts occur in the geo-spatial space. This work computes the semantic similarity by measuring the semantic distance using Euclidean and Manhattan distance measure. This computation is carried out in two steps such as retrieval of semantically similar geo-spatial concepts and the retrieval of context dependent geo-spatial concepts. Semantic similarity computation in HCC algorithm retrieves contextually and semantically similar relevant geo-spatial concepts using Euclidean distance and Manhattan distance measures. Experiments have been done using Ordnance Survey Master Map datasource and geo-spatial ontology. The precision and recall show Manhattan based semantic similarity computation improves relevancy by 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信