模型分类的自动学习

C. Y. Ip, W. Regli, Leonard Sieger, A. Shokoufandeh
{"title":"模型分类的自动学习","authors":"C. Y. Ip, W. Regli, Leonard Sieger, A. Shokoufandeh","doi":"10.1145/781606.781659","DOIUrl":null,"url":null,"abstract":"This paper describes a new approach to automate the classification of solid models using machine learning techniques. Existing approaches, based on group technology, fixed matching algorithms or pre-defined feature sets, impose a priori categorization schemes on engineering data or require significant human labeling of design data. This paper describes a shape learning algorithm and a general technique for \"teaching\" the algorithm to identify new or hidden classifications that are relevant in many engineering applications. In this way, the core shape learning algorithm can be used to find a wide variety of model classifications based on user input and training data. This allows for great flexibility in search and data mining of engineering data.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Automated learning of model classifications\",\"authors\":\"C. Y. Ip, W. Regli, Leonard Sieger, A. Shokoufandeh\",\"doi\":\"10.1145/781606.781659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new approach to automate the classification of solid models using machine learning techniques. Existing approaches, based on group technology, fixed matching algorithms or pre-defined feature sets, impose a priori categorization schemes on engineering data or require significant human labeling of design data. This paper describes a shape learning algorithm and a general technique for \\\"teaching\\\" the algorithm to identify new or hidden classifications that are relevant in many engineering applications. In this way, the core shape learning algorithm can be used to find a wide variety of model classifications based on user input and training data. This allows for great flexibility in search and data mining of engineering data.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/781606.781659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/781606.781659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

本文描述了一种使用机器学习技术自动分类实体模型的新方法。现有方法基于分组技术、固定匹配算法或预定义特征集,对工程数据施加先验分类方案,或要求对设计数据进行大量人工标记。本文描述了一种形状学习算法和一种“教”算法识别新分类或隐藏分类的一般技术,这些算法在许多工程应用中都是相关的。这样,核心形状学习算法就可以根据用户输入和训练数据找到各种各样的模型分类。这为工程数据的搜索和数据挖掘提供了极大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated learning of model classifications
This paper describes a new approach to automate the classification of solid models using machine learning techniques. Existing approaches, based on group technology, fixed matching algorithms or pre-defined feature sets, impose a priori categorization schemes on engineering data or require significant human labeling of design data. This paper describes a shape learning algorithm and a general technique for "teaching" the algorithm to identify new or hidden classifications that are relevant in many engineering applications. In this way, the core shape learning algorithm can be used to find a wide variety of model classifications based on user input and training data. This allows for great flexibility in search and data mining of engineering data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信