BP神经网络在季节性冻土区路堤沉降预测中的应用

Jia-feng Chen, Hai-bin Wei, Bao-ping An, Zhang Peng, Yang-peng Zhang
{"title":"BP神经网络在季节性冻土区路堤沉降预测中的应用","authors":"Jia-feng Chen, Hai-bin Wei, Bao-ping An, Zhang Peng, Yang-peng Zhang","doi":"10.1109/ICDMA.2013.66","DOIUrl":null,"url":null,"abstract":"Considering the function of temperature in Freeze-thaw cycle of seasonal frozen area, temperature is an important factor as BP neural network input layer. The settlement in Season frozen area is predicted based on actual measurements, which will enable the prediction results more in line with the actual engineering of the seasonally frozen ground region, and at the same time improve the prediction accuracy.","PeriodicalId":403312,"journal":{"name":"2013 Fourth International Conference on Digital Manufacturing & Automation","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of BP Neural Network Embankment Settlement Prediction in Seasonal Frozen Areas\",\"authors\":\"Jia-feng Chen, Hai-bin Wei, Bao-ping An, Zhang Peng, Yang-peng Zhang\",\"doi\":\"10.1109/ICDMA.2013.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the function of temperature in Freeze-thaw cycle of seasonal frozen area, temperature is an important factor as BP neural network input layer. The settlement in Season frozen area is predicted based on actual measurements, which will enable the prediction results more in line with the actual engineering of the seasonally frozen ground region, and at the same time improve the prediction accuracy.\",\"PeriodicalId\":403312,\"journal\":{\"name\":\"2013 Fourth International Conference on Digital Manufacturing & Automation\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth International Conference on Digital Manufacturing & Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMA.2013.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Digital Manufacturing & Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMA.2013.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑季节冻土区冻融循环中温度的作用,温度作为BP神经网络输入层的重要因素。季节冻土区的沉降预测基于实测数据,使预测结果更符合季节冻土区的实际工程,同时提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of BP Neural Network Embankment Settlement Prediction in Seasonal Frozen Areas
Considering the function of temperature in Freeze-thaw cycle of seasonal frozen area, temperature is an important factor as BP neural network input layer. The settlement in Season frozen area is predicted based on actual measurements, which will enable the prediction results more in line with the actual engineering of the seasonally frozen ground region, and at the same time improve the prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信