基于MapReduce的大规模图挖掘:大型真实网络中的三角形计数

Charalampos E. Tsourakakis
{"title":"基于MapReduce的大规模图挖掘:大型真实网络中的三角形计数","authors":"Charalampos E. Tsourakakis","doi":"10.4018/978-1-61350-053-8.ch013","DOIUrl":null,"url":null,"abstract":"In recent years, a considerable amount of research has focused on the study of graph structures arising from technological, biological and sociological systems. Graphs are the tool of choice in modeling such systems since they are typically described as sets of pairwise interactions. Important examples of such datasets are the Internet, the Web, social networks, and large-scale information networks which reach the planetary scale, e.g., Facebook and LinkedIn. The necessity to process large datasets, including graphs, has led to a major shift towards distributed computing and parallel applications, especially in the recent years. MapReduce was developed by Google, one of the largest users of multiple processor computing in the world, for facilitating the development of scalable and fault tolerant applications. MapReduce has become the de facto standard for processing large scale datasets both in industry and academia. In this Chapter, we present state of the art work on large scale graph mining using MapReduce. We survey research work on an important graph mining problem, counting the number of triangles in large-real world networks. We present the most important applications related to the count of triangles and two families of algorithms, a spectral and a combinatorial one, which solve the problem efficiently.","PeriodicalId":227251,"journal":{"name":"Graph Data Management","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Scale Graph Mining with MapReduce: Counting Triangles in Large Real Networks\",\"authors\":\"Charalampos E. Tsourakakis\",\"doi\":\"10.4018/978-1-61350-053-8.ch013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, a considerable amount of research has focused on the study of graph structures arising from technological, biological and sociological systems. Graphs are the tool of choice in modeling such systems since they are typically described as sets of pairwise interactions. Important examples of such datasets are the Internet, the Web, social networks, and large-scale information networks which reach the planetary scale, e.g., Facebook and LinkedIn. The necessity to process large datasets, including graphs, has led to a major shift towards distributed computing and parallel applications, especially in the recent years. MapReduce was developed by Google, one of the largest users of multiple processor computing in the world, for facilitating the development of scalable and fault tolerant applications. MapReduce has become the de facto standard for processing large scale datasets both in industry and academia. In this Chapter, we present state of the art work on large scale graph mining using MapReduce. We survey research work on an important graph mining problem, counting the number of triangles in large-real world networks. We present the most important applications related to the count of triangles and two families of algorithms, a spectral and a combinatorial one, which solve the problem efficiently.\",\"PeriodicalId\":227251,\"journal\":{\"name\":\"Graph Data Management\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graph Data Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-61350-053-8.ch013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graph Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61350-053-8.ch013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,大量的研究集中在对技术系统、生物系统和社会学系统产生的图结构的研究上。图是建模此类系统的首选工具,因为它们通常被描述为成对交互的集合。此类数据集的重要例子是互联网、Web、社交网络和达到全球规模的大型信息网络,例如Facebook和LinkedIn。特别是在最近几年,处理大型数据集(包括图形)的必要性导致了向分布式计算和并行应用程序的重大转变。MapReduce是由Google开发的,它是世界上最大的多处理器计算用户之一,用于促进可扩展和容错应用程序的开发。MapReduce已经成为工业界和学术界处理大规模数据集的事实上的标准。在本章中,我们介绍了使用MapReduce进行大规模图挖掘的最新进展。我们概述了一个重要的图挖掘问题的研究工作,即计算大型现实世界网络中三角形的数量。我们介绍了与三角形计数有关的最重要的应用,以及两类算法,谱算法和组合算法,它们有效地解决了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Scale Graph Mining with MapReduce: Counting Triangles in Large Real Networks
In recent years, a considerable amount of research has focused on the study of graph structures arising from technological, biological and sociological systems. Graphs are the tool of choice in modeling such systems since they are typically described as sets of pairwise interactions. Important examples of such datasets are the Internet, the Web, social networks, and large-scale information networks which reach the planetary scale, e.g., Facebook and LinkedIn. The necessity to process large datasets, including graphs, has led to a major shift towards distributed computing and parallel applications, especially in the recent years. MapReduce was developed by Google, one of the largest users of multiple processor computing in the world, for facilitating the development of scalable and fault tolerant applications. MapReduce has become the de facto standard for processing large scale datasets both in industry and academia. In this Chapter, we present state of the art work on large scale graph mining using MapReduce. We survey research work on an important graph mining problem, counting the number of triangles in large-real world networks. We present the most important applications related to the count of triangles and two families of algorithms, a spectral and a combinatorial one, which solve the problem efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信