{"title":"基于两级SVPWM技术的风能转换系统DFIG的anfi -滑模控制","authors":"H. Benbouhenni","doi":"10.11591/IJAPE.V9.I1.PP36-47","DOIUrl":null,"url":null,"abstract":"A modified adaptive neuro-fuzzy inference system sliding mode control (ANFIS-SMC) by using two-level space vector pulse width modulation (SVPWM) for doubly fed induction generator (DFIG) is proposed in this article. ANFIS-SMC with SVPWM strategy improves the basic SMC performances, which features low stator active and reactive power and also minimize the total distortion harmonic (THD) of stator current. The computer simulation results, in Matlab, demonstrate the effectiveness of the proposed control strategy which improves the performance of the DFIG.","PeriodicalId":280098,"journal":{"name":"International Journal of Applied Power Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"ANFIS-sliding mode control of a DFIG supplied by a two-level SVPWM technique for wind energy conversion system\",\"authors\":\"H. Benbouhenni\",\"doi\":\"10.11591/IJAPE.V9.I1.PP36-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified adaptive neuro-fuzzy inference system sliding mode control (ANFIS-SMC) by using two-level space vector pulse width modulation (SVPWM) for doubly fed induction generator (DFIG) is proposed in this article. ANFIS-SMC with SVPWM strategy improves the basic SMC performances, which features low stator active and reactive power and also minimize the total distortion harmonic (THD) of stator current. The computer simulation results, in Matlab, demonstrate the effectiveness of the proposed control strategy which improves the performance of the DFIG.\",\"PeriodicalId\":280098,\"journal\":{\"name\":\"International Journal of Applied Power Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJAPE.V9.I1.PP36-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJAPE.V9.I1.PP36-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANFIS-sliding mode control of a DFIG supplied by a two-level SVPWM technique for wind energy conversion system
A modified adaptive neuro-fuzzy inference system sliding mode control (ANFIS-SMC) by using two-level space vector pulse width modulation (SVPWM) for doubly fed induction generator (DFIG) is proposed in this article. ANFIS-SMC with SVPWM strategy improves the basic SMC performances, which features low stator active and reactive power and also minimize the total distortion harmonic (THD) of stator current. The computer simulation results, in Matlab, demonstrate the effectiveness of the proposed control strategy which improves the performance of the DFIG.