考虑激发成本和用户隐私的个人助理代理激发时间优化研究

Sho Oishi, Naoki Fukuta
{"title":"考虑激发成本和用户隐私的个人助理代理激发时间优化研究","authors":"Sho Oishi, Naoki Fukuta","doi":"10.1109/IIAI-AAI.2018.00127","DOIUrl":null,"url":null,"abstract":"In this paper, we present an overview of an optimization that a personal assistant agent learns timings to elicit preferences from their stakeholders while negotiating with other agents to execute each task cooperatively. We consider a negotiating agent that represents an associated stakeholder with only limited information about user preferences. To avoid bothering users and exposing their privacy to ask about their preferences, we present a mechanism that allow personal assistant agents to learn the policy to elicit preferences from their stakeholders using a Q-Learning based approach.","PeriodicalId":309975,"journal":{"name":"2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward an Optimization of Elicitation Timings Considering Elicitation Costs and User Privacy for Personal Assistant Agents\",\"authors\":\"Sho Oishi, Naoki Fukuta\",\"doi\":\"10.1109/IIAI-AAI.2018.00127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an overview of an optimization that a personal assistant agent learns timings to elicit preferences from their stakeholders while negotiating with other agents to execute each task cooperatively. We consider a negotiating agent that represents an associated stakeholder with only limited information about user preferences. To avoid bothering users and exposing their privacy to ask about their preferences, we present a mechanism that allow personal assistant agents to learn the policy to elicit preferences from their stakeholders using a Q-Learning based approach.\",\"PeriodicalId\":309975,\"journal\":{\"name\":\"2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2018.00127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2018.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们概述了一种优化方法,即个人助理智能体在与其他智能体协商以协同执行每个任务的同时,学习时间以从利益相关者那里获得偏好。我们考虑一个谈判代理,它代表一个只有有限用户偏好信息的相关利益相关者。为了避免打扰用户并暴露他们的隐私以询问他们的偏好,我们提出了一种机制,允许个人助理代理使用基于Q-Learning的方法学习策略以从利益相关者那里获取偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward an Optimization of Elicitation Timings Considering Elicitation Costs and User Privacy for Personal Assistant Agents
In this paper, we present an overview of an optimization that a personal assistant agent learns timings to elicit preferences from their stakeholders while negotiating with other agents to execute each task cooperatively. We consider a negotiating agent that represents an associated stakeholder with only limited information about user preferences. To avoid bothering users and exposing their privacy to ask about their preferences, we present a mechanism that allow personal assistant agents to learn the policy to elicit preferences from their stakeholders using a Q-Learning based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信