小样本特征向量投影技术应用于STAP的理论分析

B. Balaji, C. Gierull
{"title":"小样本特征向量投影技术应用于STAP的理论分析","authors":"B. Balaji, C. Gierull","doi":"10.1109/NRC.2002.999747","DOIUrl":null,"url":null,"abstract":"We investigate finite sample size performance of the eigenvector projection method when applied to space-time adaptive processing (STAP). A theoretical analysis of the expectation of the signal to interference plus noise ratio (SINR) for the eigenvector projection technique is presented. This gives insight into the the problem of determining the optimum choice of the projected clutter subspace. An estimator of the sample-size dependent optimum subspace dimension, which can be significantly smaller than the clutter rank, is also presented. This result, combined with near-optimal eigenvector-free projection techniques with minimal sample support, helps in reducing the computational burden significantly.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Theoretical analysis of small sample size behaviour of eigenvector projection technique applied to STAP\",\"authors\":\"B. Balaji, C. Gierull\",\"doi\":\"10.1109/NRC.2002.999747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate finite sample size performance of the eigenvector projection method when applied to space-time adaptive processing (STAP). A theoretical analysis of the expectation of the signal to interference plus noise ratio (SINR) for the eigenvector projection technique is presented. This gives insight into the the problem of determining the optimum choice of the projected clutter subspace. An estimator of the sample-size dependent optimum subspace dimension, which can be significantly smaller than the clutter rank, is also presented. This result, combined with near-optimal eigenvector-free projection techniques with minimal sample support, helps in reducing the computational burden significantly.\",\"PeriodicalId\":448055,\"journal\":{\"name\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2002.999747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了有限样本容量下特征向量投影法在时空自适应处理(STAP)中的性能。对特征向量投影技术的信噪比期望进行了理论分析。这为确定投影杂波子空间的最优选择问题提供了深入的见解。给出了一个与样本大小相关的最优子空间维数的估计量,该估计量明显小于杂波秩。这一结果与近乎最优的无特征向量投影技术相结合,具有最小的样本支持,有助于显著减少计算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical analysis of small sample size behaviour of eigenvector projection technique applied to STAP
We investigate finite sample size performance of the eigenvector projection method when applied to space-time adaptive processing (STAP). A theoretical analysis of the expectation of the signal to interference plus noise ratio (SINR) for the eigenvector projection technique is presented. This gives insight into the the problem of determining the optimum choice of the projected clutter subspace. An estimator of the sample-size dependent optimum subspace dimension, which can be significantly smaller than the clutter rank, is also presented. This result, combined with near-optimal eigenvector-free projection techniques with minimal sample support, helps in reducing the computational burden significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信