语义文本相似度的暹罗乘法LSTM

Chao Lv, Fupo Wang, Jianhui Wang, Lei Yao, Xinkai Du
{"title":"语义文本相似度的暹罗乘法LSTM","authors":"Chao Lv, Fupo Wang, Jianhui Wang, Lei Yao, Xinkai Du","doi":"10.1145/3446132.3446160","DOIUrl":null,"url":null,"abstract":"Learning the Semantic Textual Similarity (STS) is a critical issue for many NLP tasks such as question answering, document summarization and etc.. In this paper, we combine the Multiplicative LSTM structure with a Siamese architecture which learn to project word embeddings of each sentence into a fixed-dimensional embedding space to represent this sentence. Then these sentence embeddings can be used to evaluate the STS task. We compare with several similar architectures and the proposed method has achieved better results and is competitive with the best state-of-the-art siamese neural network architecture.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Siamese Multiplicative LSTM for Semantic Text Similarity\",\"authors\":\"Chao Lv, Fupo Wang, Jianhui Wang, Lei Yao, Xinkai Du\",\"doi\":\"10.1145/3446132.3446160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning the Semantic Textual Similarity (STS) is a critical issue for many NLP tasks such as question answering, document summarization and etc.. In this paper, we combine the Multiplicative LSTM structure with a Siamese architecture which learn to project word embeddings of each sentence into a fixed-dimensional embedding space to represent this sentence. Then these sentence embeddings can be used to evaluate the STS task. We compare with several similar architectures and the proposed method has achieved better results and is competitive with the best state-of-the-art siamese neural network architecture.\",\"PeriodicalId\":125388,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446132.3446160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语义文本相似度(STS)的学习是许多NLP任务(如问答、文档摘要等)的关键问题。在本文中,我们将乘法LSTM结构与Siamese结构相结合,学习将每个句子的词嵌入投影到固定维的嵌入空间中来表示该句子。然后这些句子嵌入可以用来评估STS任务。通过与几种类似结构的比较,该方法取得了较好的效果,与目前最先进的暹罗神经网络结构相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Siamese Multiplicative LSTM for Semantic Text Similarity
Learning the Semantic Textual Similarity (STS) is a critical issue for many NLP tasks such as question answering, document summarization and etc.. In this paper, we combine the Multiplicative LSTM structure with a Siamese architecture which learn to project word embeddings of each sentence into a fixed-dimensional embedding space to represent this sentence. Then these sentence embeddings can be used to evaluate the STS task. We compare with several similar architectures and the proposed method has achieved better results and is competitive with the best state-of-the-art siamese neural network architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信