使用语义文本部分改进HITS算法

Bui Quang Hung, Masanori Otsubo, Y. Hijikata, S. Nishida
{"title":"使用语义文本部分改进HITS算法","authors":"Bui Quang Hung, Masanori Otsubo, Y. Hijikata, S. Nishida","doi":"10.3233/WIA-2010-0184","DOIUrl":null,"url":null,"abstract":"Kleinberg's Hypertext-Induced Topic Selection (HITS) algorithm is a popular and effective algorithm to rank web pages. One of its problems is the topic drift problem. Previous researches have tried to solve this problem using anchor-related text. In this paper, we investigate the effectiveness of using Semantic Text Portion for improving the HITS algorithm. In detail, we examine the degree to which we can improve the HITS algorithm. We also compare STPs with other kinds of anchor-related text from the viewpoint of improving the HITS algorithm. The experimental results demonstrate that the use of STPs is best for improving the HITS algorithm.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"HITS algorithm improvement using semantic text portion\",\"authors\":\"Bui Quang Hung, Masanori Otsubo, Y. Hijikata, S. Nishida\",\"doi\":\"10.3233/WIA-2010-0184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kleinberg's Hypertext-Induced Topic Selection (HITS) algorithm is a popular and effective algorithm to rank web pages. One of its problems is the topic drift problem. Previous researches have tried to solve this problem using anchor-related text. In this paper, we investigate the effectiveness of using Semantic Text Portion for improving the HITS algorithm. In detail, we examine the degree to which we can improve the HITS algorithm. We also compare STPs with other kinds of anchor-related text from the viewpoint of improving the HITS algorithm. The experimental results demonstrate that the use of STPs is best for improving the HITS algorithm.\",\"PeriodicalId\":263450,\"journal\":{\"name\":\"Web Intell. Agent Syst.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell. Agent Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/WIA-2010-0184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-2010-0184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

Kleinberg的超文本诱导主题选择(HITS)算法是一种流行且有效的网页排名算法。其中一个问题是主题漂移问题。以往的研究尝试使用锚相关文本来解决这一问题。在本文中,我们研究了使用语义文本部分改进HITS算法的有效性。详细地,我们检查了我们可以改进HITS算法的程度。我们还从改进HITS算法的角度将stp与其他类型的锚相关文本进行了比较。实验结果表明,stp是改进HITS算法的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HITS algorithm improvement using semantic text portion
Kleinberg's Hypertext-Induced Topic Selection (HITS) algorithm is a popular and effective algorithm to rank web pages. One of its problems is the topic drift problem. Previous researches have tried to solve this problem using anchor-related text. In this paper, we investigate the effectiveness of using Semantic Text Portion for improving the HITS algorithm. In detail, we examine the degree to which we can improve the HITS algorithm. We also compare STPs with other kinds of anchor-related text from the viewpoint of improving the HITS algorithm. The experimental results demonstrate that the use of STPs is best for improving the HITS algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信