{"title":"极低信噪比的二维DOA估计方法","authors":"D. G. Segba, N. Hakem","doi":"10.1109/USNC-URSI.2018.8602708","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method to mitigate the effect of low signal to noise ratio (SNR) on two-dimensional (2-D) Direction of arrival (DOA) estimation. This method consists to extend the antenna steering vectors before applying the MUltiple SIgnal Classification (MUSIC) algorithm for 2-D DOA estimation. The simulation results show a good location accuracy enhancement.","PeriodicalId":203781,"journal":{"name":"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Dimensional DOA Estimation Method for Very Low SNR\",\"authors\":\"D. G. Segba, N. Hakem\",\"doi\":\"10.1109/USNC-URSI.2018.8602708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method to mitigate the effect of low signal to noise ratio (SNR) on two-dimensional (2-D) Direction of arrival (DOA) estimation. This method consists to extend the antenna steering vectors before applying the MUltiple SIgnal Classification (MUSIC) algorithm for 2-D DOA estimation. The simulation results show a good location accuracy enhancement.\",\"PeriodicalId\":203781,\"journal\":{\"name\":\"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USNC-URSI.2018.8602708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI.2018.8602708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Two-Dimensional DOA Estimation Method for Very Low SNR
In this paper, we propose a new method to mitigate the effect of low signal to noise ratio (SNR) on two-dimensional (2-D) Direction of arrival (DOA) estimation. This method consists to extend the antenna steering vectors before applying the MUltiple SIgnal Classification (MUSIC) algorithm for 2-D DOA estimation. The simulation results show a good location accuracy enhancement.