极低信噪比的二维DOA估计方法

D. G. Segba, N. Hakem
{"title":"极低信噪比的二维DOA估计方法","authors":"D. G. Segba, N. Hakem","doi":"10.1109/USNC-URSI.2018.8602708","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method to mitigate the effect of low signal to noise ratio (SNR) on two-dimensional (2-D) Direction of arrival (DOA) estimation. This method consists to extend the antenna steering vectors before applying the MUltiple SIgnal Classification (MUSIC) algorithm for 2-D DOA estimation. The simulation results show a good location accuracy enhancement.","PeriodicalId":203781,"journal":{"name":"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Dimensional DOA Estimation Method for Very Low SNR\",\"authors\":\"D. G. Segba, N. Hakem\",\"doi\":\"10.1109/USNC-URSI.2018.8602708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method to mitigate the effect of low signal to noise ratio (SNR) on two-dimensional (2-D) Direction of arrival (DOA) estimation. This method consists to extend the antenna steering vectors before applying the MUltiple SIgnal Classification (MUSIC) algorithm for 2-D DOA estimation. The simulation results show a good location accuracy enhancement.\",\"PeriodicalId\":203781,\"journal\":{\"name\":\"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USNC-URSI.2018.8602708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI.2018.8602708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的方法来减轻低信噪比(SNR)对二维(2d)到达方向(DOA)估计的影响。该方法首先扩展天线方向矢量,然后应用多信号分类算法进行二维DOA估计。仿真结果表明,该方法能较好地提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two-Dimensional DOA Estimation Method for Very Low SNR
In this paper, we propose a new method to mitigate the effect of low signal to noise ratio (SNR) on two-dimensional (2-D) Direction of arrival (DOA) estimation. This method consists to extend the antenna steering vectors before applying the MUltiple SIgnal Classification (MUSIC) algorithm for 2-D DOA estimation. The simulation results show a good location accuracy enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信