从“什么”和“怎么”两个方面对新闻故事进行聚类:利用词包模型和亲和力传播

W. Chu, Chao-Chin Huang, Wen-Fang Cheng
{"title":"从“什么”和“怎么”两个方面对新闻故事进行聚类:利用词包模型和亲和力传播","authors":"W. Chu, Chao-Chin Huang, Wen-Fang Cheng","doi":"10.1145/2072552.2072555","DOIUrl":null,"url":null,"abstract":"The 24-hour news TV channels repeat the same news stories again and again. In this paper we cluster hundreds of news stories broadcasted in a day into dozens of clusters according to topics, and thus facilitate efficient browsing and summarization. The proposed system automatically removes commercial breaks and detects anchorpersons, and then determines boundaries of news stories. Semantic concepts, the bag of visual word model and the bag of trajectory model are used to describe what and how objects present in news stories. After measuring similarity between stories by the earth mover's distance, the affinity propagation algorithm is utilized to cluster stories of the same topic together. The experimental results show that with the proposed methods sophisticated news stories can be effectively clustered.","PeriodicalId":280321,"journal":{"name":"Automated Information Extraction in Media Production","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"News story clustering from both what and how aspects: using bag of word model and affinity propagation\",\"authors\":\"W. Chu, Chao-Chin Huang, Wen-Fang Cheng\",\"doi\":\"10.1145/2072552.2072555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 24-hour news TV channels repeat the same news stories again and again. In this paper we cluster hundreds of news stories broadcasted in a day into dozens of clusters according to topics, and thus facilitate efficient browsing and summarization. The proposed system automatically removes commercial breaks and detects anchorpersons, and then determines boundaries of news stories. Semantic concepts, the bag of visual word model and the bag of trajectory model are used to describe what and how objects present in news stories. After measuring similarity between stories by the earth mover's distance, the affinity propagation algorithm is utilized to cluster stories of the same topic together. The experimental results show that with the proposed methods sophisticated news stories can be effectively clustered.\",\"PeriodicalId\":280321,\"journal\":{\"name\":\"Automated Information Extraction in Media Production\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Information Extraction in Media Production\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2072552.2072555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Information Extraction in Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072552.2072555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

24小时电视新闻频道一遍又一遍地重复同样的新闻报道。本文将每天播出的数百条新闻根据主题聚类成几十个类,便于高效浏览和总结。该系统能自动去除广告插播,检测主播,然后确定新闻故事的边界。用语义概念、视觉词袋模型和轨迹袋模型来描述新闻故事中物体的呈现形式和呈现方式。通过推土机的距离度量故事之间的相似度,利用亲和传播算法将同一主题的故事聚类在一起。实验结果表明,该方法可以有效地对复杂的新闻故事进行聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
News story clustering from both what and how aspects: using bag of word model and affinity propagation
The 24-hour news TV channels repeat the same news stories again and again. In this paper we cluster hundreds of news stories broadcasted in a day into dozens of clusters according to topics, and thus facilitate efficient browsing and summarization. The proposed system automatically removes commercial breaks and detects anchorpersons, and then determines boundaries of news stories. Semantic concepts, the bag of visual word model and the bag of trajectory model are used to describe what and how objects present in news stories. After measuring similarity between stories by the earth mover's distance, the affinity propagation algorithm is utilized to cluster stories of the same topic together. The experimental results show that with the proposed methods sophisticated news stories can be effectively clustered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信