描述性统计:理解数据。

A. Kozak, R. Kozak, C. Staudhammer, S. B. Watts
{"title":"描述性统计:理解数据。","authors":"A. Kozak, R. Kozak, C. Staudhammer, S. B. Watts","doi":"10.1079/9781845932756.0009","DOIUrl":null,"url":null,"abstract":"Abstract\n To adequately monitor and manage natural resources, such as forests and rangelands, many very large data sets are compiled. In this light, the chapter explores the tools used to make data sets more comprehensible. By organizing variables into tables, charts and graphs, and by calculating numbers that best describe the characteristics of a variable of interest, managers can quickly get information about the natural resources for which they are responsible.","PeriodicalId":413890,"journal":{"name":"Introductory probability and statistics: applications for forestry and natural sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Descriptive statistics: making sense of data.\",\"authors\":\"A. Kozak, R. Kozak, C. Staudhammer, S. B. Watts\",\"doi\":\"10.1079/9781845932756.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n To adequately monitor and manage natural resources, such as forests and rangelands, many very large data sets are compiled. In this light, the chapter explores the tools used to make data sets more comprehensible. By organizing variables into tables, charts and graphs, and by calculating numbers that best describe the characteristics of a variable of interest, managers can quickly get information about the natural resources for which they are responsible.\",\"PeriodicalId\":413890,\"journal\":{\"name\":\"Introductory probability and statistics: applications for forestry and natural sciences\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory probability and statistics: applications for forestry and natural sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1079/9781845932756.0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory probability and statistics: applications for forestry and natural sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781845932756.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了充分监测和管理自然资源,如森林和牧场,需要编制许多非常大的数据集。从这个角度来看,本章探讨了用于使数据集更易于理解的工具。通过将变量组织成表格、图表和图形,并通过计算最能描述感兴趣变量特征的数字,管理人员可以迅速获得有关他们所负责的自然资源的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Descriptive statistics: making sense of data.
Abstract To adequately monitor and manage natural resources, such as forests and rangelands, many very large data sets are compiled. In this light, the chapter explores the tools used to make data sets more comprehensible. By organizing variables into tables, charts and graphs, and by calculating numbers that best describe the characteristics of a variable of interest, managers can quickly get information about the natural resources for which they are responsible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信