导弹制导律的降阶多模型自适应识别算法

Yunyan Zhang, Peichang Wang, Yao Yang, Mingang Wang
{"title":"导弹制导律的降阶多模型自适应识别算法","authors":"Yunyan Zhang, Peichang Wang, Yao Yang, Mingang Wang","doi":"10.1109/ICSPCC55723.2022.9984362","DOIUrl":null,"url":null,"abstract":"To address the problem of identifying missile guidance laws and guidance parameters, a reduced-order multiple-model adaptive identification algorithm is proposed, in which the guidance parameters to be identified are used as state quantities to expand the dimensionality of the state equations, and the guidance parameters are continuously adjusted by filtering and estimation to make them close to their true values. A minimum sampling variance resampling particle filtering algorithm is used for state estimation of nonlinear multiple model sets. Finally, a variety of guidance laws are simulated and verified. The results show that the reduced-order multiple-model adaptive identification algorithm effectively improves the computational accuracy and the adaptability of the algorithm to multiple guidance laws.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Reduced-Order Multiple-Model Adaptive Identification Algorithm of Missile Guidance Law\",\"authors\":\"Yunyan Zhang, Peichang Wang, Yao Yang, Mingang Wang\",\"doi\":\"10.1109/ICSPCC55723.2022.9984362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problem of identifying missile guidance laws and guidance parameters, a reduced-order multiple-model adaptive identification algorithm is proposed, in which the guidance parameters to be identified are used as state quantities to expand the dimensionality of the state equations, and the guidance parameters are continuously adjusted by filtering and estimation to make them close to their true values. A minimum sampling variance resampling particle filtering algorithm is used for state estimation of nonlinear multiple model sets. Finally, a variety of guidance laws are simulated and verified. The results show that the reduced-order multiple-model adaptive identification algorithm effectively improves the computational accuracy and the adaptability of the algorithm to multiple guidance laws.\",\"PeriodicalId\":346917,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC55723.2022.9984362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对导弹制导规律和制导参数的识别问题,提出了一种降阶多模型自适应识别算法,该算法将待识别的制导参数作为状态量,对状态方程进行维数扩展,并通过滤波和估计不断调整制导参数,使其接近真实值。采用最小采样方差重采样粒子滤波算法对非线性多模型集进行状态估计。最后,对多种制导规律进行了仿真验证。结果表明,该降阶多模型自适应识别算法有效地提高了算法的计算精度和对多制导律的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reduced-Order Multiple-Model Adaptive Identification Algorithm of Missile Guidance Law
To address the problem of identifying missile guidance laws and guidance parameters, a reduced-order multiple-model adaptive identification algorithm is proposed, in which the guidance parameters to be identified are used as state quantities to expand the dimensionality of the state equations, and the guidance parameters are continuously adjusted by filtering and estimation to make them close to their true values. A minimum sampling variance resampling particle filtering algorithm is used for state estimation of nonlinear multiple model sets. Finally, a variety of guidance laws are simulated and verified. The results show that the reduced-order multiple-model adaptive identification algorithm effectively improves the computational accuracy and the adaptability of the algorithm to multiple guidance laws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信