{"title":"基于光学相干层析成像的内部指纹图像检测","authors":"J. Sekulska-Nalewajko, J. Gocławski, D. Sankowski","doi":"10.1515/ipc-2017-0022","DOIUrl":null,"url":null,"abstract":"Abstract Recently, optical coherence tomography (OCT) has been tested as a contactless technique helpful for damaged or spoofed fingerprint recovery. Three dimensional OCT images cover the range from the skin surface to papillary region in upper dermis. The proposed method extracts from cross-sections of volumetric images (B-scans) high intensity ridges in both air-epidermis and dermis-epidermis interfaces. The extraction is based on the localisation of two OCT signal peaks corresponding to these edges. The borders are spline smoothed in two orthogonal planes of the image space. The result images are presented and compared with camera views.","PeriodicalId":271906,"journal":{"name":"Image Processing & Communications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Detection of Internal Fingerprint Image Using Optical Coherence Tomography\",\"authors\":\"J. Sekulska-Nalewajko, J. Gocławski, D. Sankowski\",\"doi\":\"10.1515/ipc-2017-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, optical coherence tomography (OCT) has been tested as a contactless technique helpful for damaged or spoofed fingerprint recovery. Three dimensional OCT images cover the range from the skin surface to papillary region in upper dermis. The proposed method extracts from cross-sections of volumetric images (B-scans) high intensity ridges in both air-epidermis and dermis-epidermis interfaces. The extraction is based on the localisation of two OCT signal peaks corresponding to these edges. The borders are spline smoothed in two orthogonal planes of the image space. The result images are presented and compared with camera views.\",\"PeriodicalId\":271906,\"journal\":{\"name\":\"Image Processing & Communications\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Processing & Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ipc-2017-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Processing & Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ipc-2017-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Detection of Internal Fingerprint Image Using Optical Coherence Tomography
Abstract Recently, optical coherence tomography (OCT) has been tested as a contactless technique helpful for damaged or spoofed fingerprint recovery. Three dimensional OCT images cover the range from the skin surface to papillary region in upper dermis. The proposed method extracts from cross-sections of volumetric images (B-scans) high intensity ridges in both air-epidermis and dermis-epidermis interfaces. The extraction is based on the localisation of two OCT signal peaks corresponding to these edges. The borders are spline smoothed in two orthogonal planes of the image space. The result images are presented and compared with camera views.