挖掘收礼人的思想

Yi-Ning Tu, Fong-Ling Fu
{"title":"挖掘收礼人的思想","authors":"Yi-Ning Tu, Fong-Ling Fu","doi":"10.5121/IJDKP.2017.7202","DOIUrl":null,"url":null,"abstract":"Choosing an appropriate gift is difficult because the purpose of gift giving is to arouse affection in the receiver, not the giver, and too many variables that influence the results. Utilizing 600 samples and a hybrid method combining the decision tree and K-nearest neighbor approaches, this study builds a DTKNN two–stepped recommendation system which achieves a precision rate higher than 80%. The contribution of this research is to propose a new data mining technique to solve the problem of a recommendation system for altruistic gift selection which allows the receiver to perceive the affection desired by the giver.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining the Gift Receiver's Mind\",\"authors\":\"Yi-Ning Tu, Fong-Ling Fu\",\"doi\":\"10.5121/IJDKP.2017.7202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Choosing an appropriate gift is difficult because the purpose of gift giving is to arouse affection in the receiver, not the giver, and too many variables that influence the results. Utilizing 600 samples and a hybrid method combining the decision tree and K-nearest neighbor approaches, this study builds a DTKNN two–stepped recommendation system which achieves a precision rate higher than 80%. The contribution of this research is to propose a new data mining technique to solve the problem of a recommendation system for altruistic gift selection which allows the receiver to perceive the affection desired by the giver.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2017.7202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2017.7202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

选择一件合适的礼物是困难的,因为送礼的目的是唤起接受者的感情,而不是送礼者,而且影响结果的变量太多。本文利用600个样本,采用决策树和k近邻方法相结合的混合方法,构建了准确率高于80%的DTKNN两步推荐系统。本研究的贡献在于提出了一种新的数据挖掘技术来解决利他性礼物选择的推荐系统问题,该系统允许接受者感知到送礼者所期望的情感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining the Gift Receiver's Mind
Choosing an appropriate gift is difficult because the purpose of gift giving is to arouse affection in the receiver, not the giver, and too many variables that influence the results. Utilizing 600 samples and a hybrid method combining the decision tree and K-nearest neighbor approaches, this study builds a DTKNN two–stepped recommendation system which achieves a precision rate higher than 80%. The contribution of this research is to propose a new data mining technique to solve the problem of a recommendation system for altruistic gift selection which allows the receiver to perceive the affection desired by the giver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信