结合主成分分析的支持向量机检测窒息婴儿哭声

R. Sahak, Y. K. Lee, W. Mansor, A. Yassin, A. Zabidi
{"title":"结合主成分分析的支持向量机检测窒息婴儿哭声","authors":"R. Sahak, Y. K. Lee, W. Mansor, A. Yassin, A. Zabidi","doi":"10.1109/IECBES.2010.5742286","DOIUrl":null,"url":null,"abstract":"Asphyxia refers to respiratory failure in infants, a condition caused by inadequate intake of oxygen. It is important to diagnose asphyxia in infants as early as possible, as it could lead to infant morbidity. PCA has the capability to reduce the dimension of input feature vector to SVM. Previous attempts with PCA and SVM to detect asphyxia from baby cries found their principal components in a random manner, which consumes tremendous computation effort and time. Our work here investigates the improvement in performance to detect asphyxia from infant cries by integrating PCA and SVM with a polynomial kernel, with principal components being ranked by EOC, CPV and SCREE methods. Extracted features from the analysis of MFC coefficients are first ranked with the three feature selection algorithms of PCA, before being submitted to SVM for classification. Classification accuracy and support vector are employed to gauge the performance. It is found that the highest classification accuracy and support vector number from classification with support vector machine alone are 93.836% and 335.1, with a second order polynomial kernel and a regularization parameter of 1E-04, while those from CPV and SVM outperformed with CA of 94.172%, a low SV of 254.3, a third order polynomial and regularization parameter of 1E-05.","PeriodicalId":241343,"journal":{"name":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Detection of asphyxiated infant cry using support vector machine integrated with principal component analysis\",\"authors\":\"R. Sahak, Y. K. Lee, W. Mansor, A. Yassin, A. Zabidi\",\"doi\":\"10.1109/IECBES.2010.5742286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asphyxia refers to respiratory failure in infants, a condition caused by inadequate intake of oxygen. It is important to diagnose asphyxia in infants as early as possible, as it could lead to infant morbidity. PCA has the capability to reduce the dimension of input feature vector to SVM. Previous attempts with PCA and SVM to detect asphyxia from baby cries found their principal components in a random manner, which consumes tremendous computation effort and time. Our work here investigates the improvement in performance to detect asphyxia from infant cries by integrating PCA and SVM with a polynomial kernel, with principal components being ranked by EOC, CPV and SCREE methods. Extracted features from the analysis of MFC coefficients are first ranked with the three feature selection algorithms of PCA, before being submitted to SVM for classification. Classification accuracy and support vector are employed to gauge the performance. It is found that the highest classification accuracy and support vector number from classification with support vector machine alone are 93.836% and 335.1, with a second order polynomial kernel and a regularization parameter of 1E-04, while those from CPV and SVM outperformed with CA of 94.172%, a low SV of 254.3, a third order polynomial and regularization parameter of 1E-05.\",\"PeriodicalId\":241343,\"journal\":{\"name\":\"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES.2010.5742286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES.2010.5742286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

窒息指的是婴儿的呼吸衰竭,是由氧气摄入不足引起的。尽早诊断婴儿窒息是很重要的,因为它可能导致婴儿发病率。PCA具有将输入特征向量降维为支持向量机的能力。以往用主成分分析和支持向量机对婴儿哭声进行窒息检测的方法都是随机寻找主成分的,计算量大,耗时长。我们在此研究了通过多项式核集成主成分分析和支持向量机来检测婴儿哭声中窒息的性能改进,并通过EOC, CPV和SCREE方法对主成分进行排序。从MFC系数分析中提取的特征首先用PCA的三种特征选择算法进行排序,然后提交给SVM进行分类。使用分类精度和支持向量来衡量性能。结果表明,单独使用支持向量机分类的准确率和支持向量数分别为93.836%和335.1,其二阶多项式核和正则化参数为1E-04; CPV和SVM分类的准确率和支持向量数分别为94.172%和254.3,其三阶多项式核和正则化参数为1E-05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of asphyxiated infant cry using support vector machine integrated with principal component analysis
Asphyxia refers to respiratory failure in infants, a condition caused by inadequate intake of oxygen. It is important to diagnose asphyxia in infants as early as possible, as it could lead to infant morbidity. PCA has the capability to reduce the dimension of input feature vector to SVM. Previous attempts with PCA and SVM to detect asphyxia from baby cries found their principal components in a random manner, which consumes tremendous computation effort and time. Our work here investigates the improvement in performance to detect asphyxia from infant cries by integrating PCA and SVM with a polynomial kernel, with principal components being ranked by EOC, CPV and SCREE methods. Extracted features from the analysis of MFC coefficients are first ranked with the three feature selection algorithms of PCA, before being submitted to SVM for classification. Classification accuracy and support vector are employed to gauge the performance. It is found that the highest classification accuracy and support vector number from classification with support vector machine alone are 93.836% and 335.1, with a second order polynomial kernel and a regularization parameter of 1E-04, while those from CPV and SVM outperformed with CA of 94.172%, a low SV of 254.3, a third order polynomial and regularization parameter of 1E-05.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信