AllReduce的递归加倍推广

M. Ruefenacht, Mark Bull, S. Booth
{"title":"AllReduce的递归加倍推广","authors":"M. Ruefenacht, Mark Bull, S. Booth","doi":"10.1145/2966884.2966913","DOIUrl":null,"url":null,"abstract":"The performance of AllReduce is crucial at scale. The recursive doubling with pairwise exchange algorithm theoretically achieves O(log2 N) scaling for short messages with N peers, but is limited by improvements in network latency. A multi-way exchange can be implemented using message pipelining, which is easier to improve than latency. Using our method, recursive multiplying, we show reductions in execution time of between 8% and 40% of AllReduce on a Cray XC30 over recursive doubling.","PeriodicalId":264069,"journal":{"name":"Proceedings of the 23rd European MPI Users' Group Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generalisation of Recursive Doubling for AllReduce\",\"authors\":\"M. Ruefenacht, Mark Bull, S. Booth\",\"doi\":\"10.1145/2966884.2966913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of AllReduce is crucial at scale. The recursive doubling with pairwise exchange algorithm theoretically achieves O(log2 N) scaling for short messages with N peers, but is limited by improvements in network latency. A multi-way exchange can be implemented using message pipelining, which is easier to improve than latency. Using our method, recursive multiplying, we show reductions in execution time of between 8% and 40% of AllReduce on a Cray XC30 over recursive doubling.\",\"PeriodicalId\":264069,\"journal\":{\"name\":\"Proceedings of the 23rd European MPI Users' Group Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd European MPI Users' Group Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2966884.2966913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2966884.2966913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

AllReduce的性能在规模上至关重要。对于具有N个对等点的短消息,使用成对交换算法的递归加倍在理论上可以实现O(log2 N)的扩展,但受到网络延迟改进的限制。可以使用消息管道实现多路交换,这比延迟更容易改进。使用我们的递归乘法方法,我们发现在Cray XC30上,与递归倍增相比,AllReduce的执行时间减少了8%到40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalisation of Recursive Doubling for AllReduce
The performance of AllReduce is crucial at scale. The recursive doubling with pairwise exchange algorithm theoretically achieves O(log2 N) scaling for short messages with N peers, but is limited by improvements in network latency. A multi-way exchange can be implemented using message pipelining, which is easier to improve than latency. Using our method, recursive multiplying, we show reductions in execution time of between 8% and 40% of AllReduce on a Cray XC30 over recursive doubling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信