{"title":"访问限制下的运行时验证","authors":"Rania Taleb, R. Khoury, Sylvain Hallé","doi":"10.1109/FormaliSE52586.2021.00010","DOIUrl":null,"url":null,"abstract":"We define a logical framework that permits runtime verification to take place when a monitor has incomplete or uncertain information about the underlying trace. Uncertainty is modeled as a stateful access control proxy that has the capacity to turn events into sets of possible events, resulting in what we call a “multi-trace”. We describe a model of both proxy and monitor as extensions of Mealy machines, and provide an algorithm to lift a classical monitor into a sound, loss-tolerant monitor. Experiments on various scenarios show that the approach can account for various types of data degradation and access limitations, provides a tighter verdict than existing works in some cases, and preserves scalable performance of the model.","PeriodicalId":123481,"journal":{"name":"2021 IEEE/ACM 9th International Conference on Formal Methods in Software Engineering (FormaliSE)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Runtime Verification Under Access Restrictions\",\"authors\":\"Rania Taleb, R. Khoury, Sylvain Hallé\",\"doi\":\"10.1109/FormaliSE52586.2021.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a logical framework that permits runtime verification to take place when a monitor has incomplete or uncertain information about the underlying trace. Uncertainty is modeled as a stateful access control proxy that has the capacity to turn events into sets of possible events, resulting in what we call a “multi-trace”. We describe a model of both proxy and monitor as extensions of Mealy machines, and provide an algorithm to lift a classical monitor into a sound, loss-tolerant monitor. Experiments on various scenarios show that the approach can account for various types of data degradation and access limitations, provides a tighter verdict than existing works in some cases, and preserves scalable performance of the model.\",\"PeriodicalId\":123481,\"journal\":{\"name\":\"2021 IEEE/ACM 9th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 9th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FormaliSE52586.2021.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 9th International Conference on Formal Methods in Software Engineering (FormaliSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FormaliSE52586.2021.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We define a logical framework that permits runtime verification to take place when a monitor has incomplete or uncertain information about the underlying trace. Uncertainty is modeled as a stateful access control proxy that has the capacity to turn events into sets of possible events, resulting in what we call a “multi-trace”. We describe a model of both proxy and monitor as extensions of Mealy machines, and provide an algorithm to lift a classical monitor into a sound, loss-tolerant monitor. Experiments on various scenarios show that the approach can account for various types of data degradation and access limitations, provides a tighter verdict than existing works in some cases, and preserves scalable performance of the model.