使用二维模型的静止图像对象分类

Raluca-Diana Petre, T. Zaharia
{"title":"使用二维模型的静止图像对象分类","authors":"Raluca-Diana Petre, T. Zaharia","doi":"10.1109/ICCE-BERLIN.2011.6031874","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel recognition scheme for semantic labeling of 2D objects present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to associate the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Experiments show that such a system can achieve recognition rate up to 70.4%.","PeriodicalId":236486,"journal":{"name":"2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin)","volume":"468 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sill image object categorization using 2D models\",\"authors\":\"Raluca-Diana Petre, T. Zaharia\",\"doi\":\"10.1109/ICCE-BERLIN.2011.6031874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel recognition scheme for semantic labeling of 2D objects present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to associate the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Experiments show that such a system can achieve recognition rate up to 70.4%.\",\"PeriodicalId\":236486,\"journal\":{\"name\":\"2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin)\",\"volume\":\"468 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-BERLIN.2011.6031874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-BERLIN.2011.6031874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的静态图像中二维物体的语义标记识别方案。该原理包括将未知的2D对象与分类的3D模型进行匹配,以便将3D对象的语义与图像相关联。我们通过使用MPEG-7和普林斯顿3D模型数据库来测试我们的新识别框架,以便标记从网络中随机选择的未知图像。实验表明,该系统的识别率可达70.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sill image object categorization using 2D models
This paper proposes a novel recognition scheme for semantic labeling of 2D objects present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to associate the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Experiments show that such a system can achieve recognition rate up to 70.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信