脑肿瘤检测与分割研究进展

Kalifa Shantta, O. Basir
{"title":"脑肿瘤检测与分割研究进展","authors":"Kalifa Shantta, O. Basir","doi":"10.21013/jte.v10.n4.p1","DOIUrl":null,"url":null,"abstract":"Even with the enormous progress in medical technology, brain tumor detection is still an extremely tedious and complex task for the physicians. The early and accurate detection of brain tumors enables effective and efficient therapy and thus can result in increased survival rates. Automatic detection and classification of brain tumors have the potential to achieve efficiency and a higher degree of predictable accuracy. However, it is well established that the accuracy performance of automatic detection and classification techniques varies from technique to technique, and tends to be image modality dependent. This paper reviews the state-of-the-art detection techniques and highlights their pros and cons.","PeriodicalId":269688,"journal":{"name":"IRA-International Journal of Technology & Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Brain Tumor Detection and Segmentation: A Survey\",\"authors\":\"Kalifa Shantta, O. Basir\",\"doi\":\"10.21013/jte.v10.n4.p1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even with the enormous progress in medical technology, brain tumor detection is still an extremely tedious and complex task for the physicians. The early and accurate detection of brain tumors enables effective and efficient therapy and thus can result in increased survival rates. Automatic detection and classification of brain tumors have the potential to achieve efficiency and a higher degree of predictable accuracy. However, it is well established that the accuracy performance of automatic detection and classification techniques varies from technique to technique, and tends to be image modality dependent. This paper reviews the state-of-the-art detection techniques and highlights their pros and cons.\",\"PeriodicalId\":269688,\"journal\":{\"name\":\"IRA-International Journal of Technology & Engineering\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRA-International Journal of Technology & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21013/jte.v10.n4.p1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRA-International Journal of Technology & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21013/jte.v10.n4.p1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

即使医疗技术有了巨大的进步,脑肿瘤的检测对医生来说仍然是一项极其繁琐和复杂的任务。脑肿瘤的早期和准确的检测使有效和高效的治疗,从而可以提高生存率。脑肿瘤的自动检测和分类有可能实现效率和更高程度的可预测的准确性。然而,已经确定的是,自动检测和分类技术的准确性表现因技术而异,并且往往依赖于图像模态。本文回顾了最新的检测技术,并强调了它们的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Tumor Detection and Segmentation: A Survey
Even with the enormous progress in medical technology, brain tumor detection is still an extremely tedious and complex task for the physicians. The early and accurate detection of brain tumors enables effective and efficient therapy and thus can result in increased survival rates. Automatic detection and classification of brain tumors have the potential to achieve efficiency and a higher degree of predictable accuracy. However, it is well established that the accuracy performance of automatic detection and classification techniques varies from technique to technique, and tends to be image modality dependent. This paper reviews the state-of-the-art detection techniques and highlights their pros and cons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信