Shuichi Kawano, Ibuki Hoshina, Kaito Shimamura, S. Konishi
{"title":"贝叶斯套索回归的预测模型选择准则","authors":"Shuichi Kawano, Ibuki Hoshina, Kaito Shimamura, S. Konishi","doi":"10.5183/JJSCS.1501001_220","DOIUrl":null,"url":null,"abstract":"We consider the Bayesian lasso for regression, which can be interpreted as an L 1 norm regularization based on a Bayesian approach when the Laplace or double-exponential prior distribution is placed on the regression coefficients. A crucial issue is an appropriate choice of the values of hyperparameters included in the prior distributions, which essentially control the sparsity in the estimated model. To choose the values of tuning parameters, we introduce a model selection criterion for evaluating a Bayesian predictive distribution for the Bayesian lasso. Numerical results are presented to illustrate the properties of our sparse Bayesian modeling procedure.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PREDICTIVE MODEL SELECTION CRITERIA FOR BAYESIAN LASSO REGRESSION\",\"authors\":\"Shuichi Kawano, Ibuki Hoshina, Kaito Shimamura, S. Konishi\",\"doi\":\"10.5183/JJSCS.1501001_220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Bayesian lasso for regression, which can be interpreted as an L 1 norm regularization based on a Bayesian approach when the Laplace or double-exponential prior distribution is placed on the regression coefficients. A crucial issue is an appropriate choice of the values of hyperparameters included in the prior distributions, which essentially control the sparsity in the estimated model. To choose the values of tuning parameters, we introduce a model selection criterion for evaluating a Bayesian predictive distribution for the Bayesian lasso. Numerical results are presented to illustrate the properties of our sparse Bayesian modeling procedure.\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS.1501001_220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1501001_220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PREDICTIVE MODEL SELECTION CRITERIA FOR BAYESIAN LASSO REGRESSION
We consider the Bayesian lasso for regression, which can be interpreted as an L 1 norm regularization based on a Bayesian approach when the Laplace or double-exponential prior distribution is placed on the regression coefficients. A crucial issue is an appropriate choice of the values of hyperparameters included in the prior distributions, which essentially control the sparsity in the estimated model. To choose the values of tuning parameters, we introduce a model selection criterion for evaluating a Bayesian predictive distribution for the Bayesian lasso. Numerical results are presented to illustrate the properties of our sparse Bayesian modeling procedure.