DiBA:大规模计算集群的分布式电力预算分配

Masoud Badiei, Xin Zhan, R. Azimi, S. Reda, Na Li
{"title":"DiBA:大规模计算集群的分布式电力预算分配","authors":"Masoud Badiei, Xin Zhan, R. Azimi, S. Reda, Na Li","doi":"10.1109/CCGrid.2016.101","DOIUrl":null,"url":null,"abstract":"Power management has become a central issue inlarge-scale computing clusters where a considerable amount ofenergy is consumed and a large operational cost is incurredannually. Traditional power management techniques have a centralizeddesign that creates challenges for scalability of computingclusters. In this work, we develop a framework for distributedpower budget allocation that maximizes the utility of computingnodes subject to a total power budget constraint. To eliminate the role of central coordinator in the primaldualtechnique, we propose a distributed power budget allocationalgorithm (DiBA) which maximizes the combined performanceof a cluster subject to a power budget constraint in a distributedfashion. Specifically, DiBA is a consensus-based algorithm inwhich each server determines its optimal power consumptionlocally by communicating its state with neighbors (connectednodes) in a cluster. We characterize a synchronous primal-dualtechnique to obtain a benchmark for comparison with thedistributed algorithm that we propose. We demonstrate numericallythat DiBA is a scalable algorithm that outperforms theconventional primal-dual method on large scale clusters in termsof convergence time. Further, DiBA eliminates the communicationbottleneck in the primal-dual method. We thoroughly evaluatethe characteristics of DiBA through simulations of large-scaleclusters. Furthermore, we provide results from a proof-of-conceptimplementation on a real experimental cluster.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters\",\"authors\":\"Masoud Badiei, Xin Zhan, R. Azimi, S. Reda, Na Li\",\"doi\":\"10.1109/CCGrid.2016.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power management has become a central issue inlarge-scale computing clusters where a considerable amount ofenergy is consumed and a large operational cost is incurredannually. Traditional power management techniques have a centralizeddesign that creates challenges for scalability of computingclusters. In this work, we develop a framework for distributedpower budget allocation that maximizes the utility of computingnodes subject to a total power budget constraint. To eliminate the role of central coordinator in the primaldualtechnique, we propose a distributed power budget allocationalgorithm (DiBA) which maximizes the combined performanceof a cluster subject to a power budget constraint in a distributedfashion. Specifically, DiBA is a consensus-based algorithm inwhich each server determines its optimal power consumptionlocally by communicating its state with neighbors (connectednodes) in a cluster. We characterize a synchronous primal-dualtechnique to obtain a benchmark for comparison with thedistributed algorithm that we propose. We demonstrate numericallythat DiBA is a scalable algorithm that outperforms theconventional primal-dual method on large scale clusters in termsof convergence time. Further, DiBA eliminates the communicationbottleneck in the primal-dual method. We thoroughly evaluatethe characteristics of DiBA through simulations of large-scaleclusters. Furthermore, we provide results from a proof-of-conceptimplementation on a real experimental cluster.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在大规模计算集群中,电源管理已经成为一个中心问题,每年都要消耗大量的能源和产生大量的运营成本。传统的电源管理技术采用集中式设计,这给计算集群的可扩展性带来了挑战。在这项工作中,我们开发了一个分布式功率预算分配框架,该框架可以最大限度地利用受总功率预算约束的计算节点。为了消除原始对偶技术中中心协调器的作用,我们提出了一种分布式功率预算分配算法(DiBA),该算法以分布式方式最大化受功率预算约束的集群的综合性能。具体来说,DiBA是一种基于共识的算法,其中每个服务器通过与集群中的邻居(连接节点)通信其状态来确定其本地最优功耗。我们描述了一种同步原始-双技术,以获得与我们提出的分布式算法进行比较的基准。我们在数值上证明了DiBA是一种可扩展的算法,在收敛时间方面优于传统的原始对偶方法。此外,DiBA消除了原对偶方法中的通信瓶颈。我们通过大规模的群集模拟来全面评估DiBA的特性。此外,我们在一个真实的实验集群上提供了概念验证的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters
Power management has become a central issue inlarge-scale computing clusters where a considerable amount ofenergy is consumed and a large operational cost is incurredannually. Traditional power management techniques have a centralizeddesign that creates challenges for scalability of computingclusters. In this work, we develop a framework for distributedpower budget allocation that maximizes the utility of computingnodes subject to a total power budget constraint. To eliminate the role of central coordinator in the primaldualtechnique, we propose a distributed power budget allocationalgorithm (DiBA) which maximizes the combined performanceof a cluster subject to a power budget constraint in a distributedfashion. Specifically, DiBA is a consensus-based algorithm inwhich each server determines its optimal power consumptionlocally by communicating its state with neighbors (connectednodes) in a cluster. We characterize a synchronous primal-dualtechnique to obtain a benchmark for comparison with thedistributed algorithm that we propose. We demonstrate numericallythat DiBA is a scalable algorithm that outperforms theconventional primal-dual method on large scale clusters in termsof convergence time. Further, DiBA eliminates the communicationbottleneck in the primal-dual method. We thoroughly evaluatethe characteristics of DiBA through simulations of large-scaleclusters. Furthermore, we provide results from a proof-of-conceptimplementation on a real experimental cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信