研究了RBF神经网络在硅压力传感器温度漂移补偿中的应用

Yang Chuan, Li Chen, Zhang Chao
{"title":"研究了RBF神经网络在硅压力传感器温度漂移补偿中的应用","authors":"Yang Chuan, Li Chen, Zhang Chao","doi":"10.1109/ICCDA.2010.5541378","DOIUrl":null,"url":null,"abstract":"Temperature drift is the important factor of the precision of diffused silicon pressure sensor, so author uses software to compensate for it to improve the precision of the sensor. At the data base of the temperature characteristic experiment of diffused silicon pressure sensor, author proposes to use RBF neural network to establish temperature drift compensated model with regression analysis. Compared with two-dimension regression analysis, RBF neural network can improve the precision of the model distinctly.","PeriodicalId":190625,"journal":{"name":"2010 International Conference On Computer Design and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The application of RBF neural network in the compensation for temperature drift of the silicon pressure sensor\",\"authors\":\"Yang Chuan, Li Chen, Zhang Chao\",\"doi\":\"10.1109/ICCDA.2010.5541378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature drift is the important factor of the precision of diffused silicon pressure sensor, so author uses software to compensate for it to improve the precision of the sensor. At the data base of the temperature characteristic experiment of diffused silicon pressure sensor, author proposes to use RBF neural network to establish temperature drift compensated model with regression analysis. Compared with two-dimension regression analysis, RBF neural network can improve the precision of the model distinctly.\",\"PeriodicalId\":190625,\"journal\":{\"name\":\"2010 International Conference On Computer Design and Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference On Computer Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCDA.2010.5541378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference On Computer Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDA.2010.5541378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

温度漂移是影响扩散硅压力传感器精度的重要因素,本文采用软件对温度漂移进行补偿,以提高传感器的精度。在扩散硅压力传感器温度特性实验数据基础上,提出利用RBF神经网络建立温度漂移补偿模型并进行回归分析。与二维回归分析相比,RBF神经网络能明显提高模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of RBF neural network in the compensation for temperature drift of the silicon pressure sensor
Temperature drift is the important factor of the precision of diffused silicon pressure sensor, so author uses software to compensate for it to improve the precision of the sensor. At the data base of the temperature characteristic experiment of diffused silicon pressure sensor, author proposes to use RBF neural network to establish temperature drift compensated model with regression analysis. Compared with two-dimension regression analysis, RBF neural network can improve the precision of the model distinctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信