一种有效的神经元获胜频率自组织映射学习算法

V. Chaudhary, A. Ahlawat, R. S. Bhatia
{"title":"一种有效的神经元获胜频率自组织映射学习算法","authors":"V. Chaudhary, A. Ahlawat, R. S. Bhatia","doi":"10.1109/IADCC.2013.6514307","DOIUrl":null,"url":null,"abstract":"The Self-organizing map (SOM) has been extensively applied to data clustering, image analysis, dimension reduction, and so forth. The conventional SOM does not calculate the winning frequency of each neuron. In this study, we propose a modified SOM which calculate the winning frequency of each neuron. We investigate the behavior of modified SOM in detail. The learning performance is evaluated using the three measurements. We apply modified SOM to various input data set and confirm that modified SOM obtain a more effective map reflecting the distribution state of the input data.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An efficient Self-organizing map learning algorithm with winning frequency of neurons for clustering application\",\"authors\":\"V. Chaudhary, A. Ahlawat, R. S. Bhatia\",\"doi\":\"10.1109/IADCC.2013.6514307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Self-organizing map (SOM) has been extensively applied to data clustering, image analysis, dimension reduction, and so forth. The conventional SOM does not calculate the winning frequency of each neuron. In this study, we propose a modified SOM which calculate the winning frequency of each neuron. We investigate the behavior of modified SOM in detail. The learning performance is evaluated using the three measurements. We apply modified SOM to various input data set and confirm that modified SOM obtain a more effective map reflecting the distribution state of the input data.\",\"PeriodicalId\":325901,\"journal\":{\"name\":\"2013 3rd IEEE International Advance Computing Conference (IACC)\",\"volume\":\"437 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 3rd IEEE International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2013.6514307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

自组织映射(SOM)已广泛应用于数据聚类、图像分析、降维等领域。传统的SOM不计算每个神经元的获胜频率。在这项研究中,我们提出了一种改进的SOM来计算每个神经元的获胜频率。我们详细研究了改性SOM的行为。使用这三个测量来评估学习绩效。我们将修改后的SOM应用于各种输入数据集,并证实修改后的SOM得到了更有效的反映输入数据分布状态的地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient Self-organizing map learning algorithm with winning frequency of neurons for clustering application
The Self-organizing map (SOM) has been extensively applied to data clustering, image analysis, dimension reduction, and so forth. The conventional SOM does not calculate the winning frequency of each neuron. In this study, we propose a modified SOM which calculate the winning frequency of each neuron. We investigate the behavior of modified SOM in detail. The learning performance is evaluated using the three measurements. We apply modified SOM to various input data set and confirm that modified SOM obtain a more effective map reflecting the distribution state of the input data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信