基于PUMA的高阶运动参数快速无网格估计方法

Lei Xie, Zishu He, Jun Tong
{"title":"基于PUMA的高阶运动参数快速无网格估计方法","authors":"Lei Xie, Zishu He, Jun Tong","doi":"10.1109/ICSP48669.2020.9321018","DOIUrl":null,"url":null,"abstract":"This paper considers the efficient estimation of the high order motion parameters of the maneuvering targets. A fast gridless long-time coherent integration algorithm based on maximum likelihood (ML) estimation is proposed. After some matrix manipulations, we transform the ML estimation to a weighted least square (WLS) problem and solve it by Principal-singular-vector Utilization for Modal Analysis (PUMA). The proposed method avoids the grid effect with low computational complexity because the motion parameters are estimated by solving a polynomial equation instead of multi-dimensional searching. Simulations are conducted for validating the effectiveness and illustrating the high performance of the proposed method.","PeriodicalId":237073,"journal":{"name":"2020 15th IEEE International Conference on Signal Processing (ICSP)","volume":"300 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Gridless Method for High Order Motion Parameter Estimation Based on PUMA\",\"authors\":\"Lei Xie, Zishu He, Jun Tong\",\"doi\":\"10.1109/ICSP48669.2020.9321018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the efficient estimation of the high order motion parameters of the maneuvering targets. A fast gridless long-time coherent integration algorithm based on maximum likelihood (ML) estimation is proposed. After some matrix manipulations, we transform the ML estimation to a weighted least square (WLS) problem and solve it by Principal-singular-vector Utilization for Modal Analysis (PUMA). The proposed method avoids the grid effect with low computational complexity because the motion parameters are estimated by solving a polynomial equation instead of multi-dimensional searching. Simulations are conducted for validating the effectiveness and illustrating the high performance of the proposed method.\",\"PeriodicalId\":237073,\"journal\":{\"name\":\"2020 15th IEEE International Conference on Signal Processing (ICSP)\",\"volume\":\"300 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th IEEE International Conference on Signal Processing (ICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSP48669.2020.9321018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th IEEE International Conference on Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP48669.2020.9321018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了机动目标高阶运动参数的有效估计。提出了一种基于极大似然估计的快速无网格长时间相干积分算法。经过一些矩阵处理后,我们将机器学习估计转化为加权最小二乘问题,并利用主奇异向量利用模态分析(PUMA)来解决它。该方法通过求解多项式方程来估计运动参数,而不是进行多维搜索,避免了网格效应,计算复杂度低。通过仿真验证了该方法的有效性,并说明了该方法的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Gridless Method for High Order Motion Parameter Estimation Based on PUMA
This paper considers the efficient estimation of the high order motion parameters of the maneuvering targets. A fast gridless long-time coherent integration algorithm based on maximum likelihood (ML) estimation is proposed. After some matrix manipulations, we transform the ML estimation to a weighted least square (WLS) problem and solve it by Principal-singular-vector Utilization for Modal Analysis (PUMA). The proposed method avoids the grid effect with low computational complexity because the motion parameters are estimated by solving a polynomial equation instead of multi-dimensional searching. Simulations are conducted for validating the effectiveness and illustrating the high performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信