{"title":"基于格的矢量量化直接和码本设计","authors":"C. Barrett, R. L. Frost","doi":"10.1109/DCC.1995.515546","DOIUrl":null,"url":null,"abstract":"Summary form only given. A direct sum codebook (DSC) has the potential to reduce both memory and computational costs of vector quantization. A DSC consists of several sets or stages of vectors. An equivalent code vector is made from the direct sum of one vector from each stage. Such a structure, with p stages containing m vectors each, has m/sup p/ equivalent code vectors, while requiring the storage of only mp vectors. DSC quantizers are not only memory efficient, they also have a naturally simple encoding algorithm, called a residual encoding. A residual encoding uses the nearest neighbor at each stage, requiring comparison with mp vectors rather than all m/sup p/ possible combinations. Unfortunately, this encoding algorithm is suboptimal because of a problem called entanglement. Entanglement occurs when a different vector from that obtained by a residual encoding is actually a better fit for the input vector. An optimal encoding can be obtained by an exhaustive search, but this sacrifices the savings in computation. Lattice-based DSC quantizers are designed to be optimal under a residual encoding by avoiding entanglement Successive stages of the codebook produce finer and finer partitions of the space, resulting in equivalent code vectors which are points in a truncated lattice. After the initial design, the codebook can be optimized for a given source, increasing performance beyond that of a simple lattice vector quantizer. Experimental results show that DSC quantizers based on cubical lattices perform as well as exhaustive search quantizers on a scalar source.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lattice-based designs of direct sum codebooks for vector quantization\",\"authors\":\"C. Barrett, R. L. Frost\",\"doi\":\"10.1109/DCC.1995.515546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. A direct sum codebook (DSC) has the potential to reduce both memory and computational costs of vector quantization. A DSC consists of several sets or stages of vectors. An equivalent code vector is made from the direct sum of one vector from each stage. Such a structure, with p stages containing m vectors each, has m/sup p/ equivalent code vectors, while requiring the storage of only mp vectors. DSC quantizers are not only memory efficient, they also have a naturally simple encoding algorithm, called a residual encoding. A residual encoding uses the nearest neighbor at each stage, requiring comparison with mp vectors rather than all m/sup p/ possible combinations. Unfortunately, this encoding algorithm is suboptimal because of a problem called entanglement. Entanglement occurs when a different vector from that obtained by a residual encoding is actually a better fit for the input vector. An optimal encoding can be obtained by an exhaustive search, but this sacrifices the savings in computation. Lattice-based DSC quantizers are designed to be optimal under a residual encoding by avoiding entanglement Successive stages of the codebook produce finer and finer partitions of the space, resulting in equivalent code vectors which are points in a truncated lattice. After the initial design, the codebook can be optimized for a given source, increasing performance beyond that of a simple lattice vector quantizer. Experimental results show that DSC quantizers based on cubical lattices perform as well as exhaustive search quantizers on a scalar source.\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lattice-based designs of direct sum codebooks for vector quantization
Summary form only given. A direct sum codebook (DSC) has the potential to reduce both memory and computational costs of vector quantization. A DSC consists of several sets or stages of vectors. An equivalent code vector is made from the direct sum of one vector from each stage. Such a structure, with p stages containing m vectors each, has m/sup p/ equivalent code vectors, while requiring the storage of only mp vectors. DSC quantizers are not only memory efficient, they also have a naturally simple encoding algorithm, called a residual encoding. A residual encoding uses the nearest neighbor at each stage, requiring comparison with mp vectors rather than all m/sup p/ possible combinations. Unfortunately, this encoding algorithm is suboptimal because of a problem called entanglement. Entanglement occurs when a different vector from that obtained by a residual encoding is actually a better fit for the input vector. An optimal encoding can be obtained by an exhaustive search, but this sacrifices the savings in computation. Lattice-based DSC quantizers are designed to be optimal under a residual encoding by avoiding entanglement Successive stages of the codebook produce finer and finer partitions of the space, resulting in equivalent code vectors which are points in a truncated lattice. After the initial design, the codebook can be optimized for a given source, increasing performance beyond that of a simple lattice vector quantizer. Experimental results show that DSC quantizers based on cubical lattices perform as well as exhaustive search quantizers on a scalar source.