贝宁:结合敲除数据与时间序列基因表达数据进行基因调控网络推断

Stephanie Kamgnia, G. Butler
{"title":"贝宁:结合敲除数据与时间序列基因表达数据进行基因调控网络推断","authors":"Stephanie Kamgnia, G. Butler","doi":"10.1145/3365953.3365955","DOIUrl":null,"url":null,"abstract":"Gene regulatory network inference is one of the central problems in computational biology. The limited availability of biological data as well as the intrinsic noise they contain have triggered the need of models that integrate the vast variety of data available to take advantage of the complementarity of the information they provide about regulation. With this idea in mind, we propose BENIN: Biologically Enhanced Network INference. BENIN is a general framework that jointly considers prior knowledge with expression data to boost the network inference. This method considers network inference as a feature selection problem. To solve it, BENIN uses a penalized regression method, elastic net, combined with bootstrap resampling. Using the benchmark dataset from the DREAM 4 challenge, we demonstrate that, when using times series expression data with knockout gene expression data, BENIN significantly outperforms other methods.","PeriodicalId":158189,"journal":{"name":"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BENIN: combining knockout data with time series gene expression data for the gene regulatory network inference\",\"authors\":\"Stephanie Kamgnia, G. Butler\",\"doi\":\"10.1145/3365953.3365955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene regulatory network inference is one of the central problems in computational biology. The limited availability of biological data as well as the intrinsic noise they contain have triggered the need of models that integrate the vast variety of data available to take advantage of the complementarity of the information they provide about regulation. With this idea in mind, we propose BENIN: Biologically Enhanced Network INference. BENIN is a general framework that jointly considers prior knowledge with expression data to boost the network inference. This method considers network inference as a feature selection problem. To solve it, BENIN uses a penalized regression method, elastic net, combined with bootstrap resampling. Using the benchmark dataset from the DREAM 4 challenge, we demonstrate that, when using times series expression data with knockout gene expression data, BENIN significantly outperforms other methods.\",\"PeriodicalId\":158189,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365953.3365955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365953.3365955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因调控网络推理是计算生物学的核心问题之一。生物数据的有限可用性以及它们包含的固有噪声引发了对模型的需求,这些模型需要整合大量可用的数据,以利用它们提供的有关监管的信息的互补性。考虑到这个想法,我们提出了BENIN:生物增强网络推理。BENIN是一种综合考虑先验知识和表达数据来增强网络推理能力的通用框架。该方法将网络推理看作是一个特征选择问题。为了解决这个问题,贝宁采用了一种惩罚回归方法——弹性网,并结合自举重采样。使用来自DREAM 4挑战的基准数据集,我们证明,当使用敲除基因表达数据的时间序列表达数据时,BENIN显著优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BENIN: combining knockout data with time series gene expression data for the gene regulatory network inference
Gene regulatory network inference is one of the central problems in computational biology. The limited availability of biological data as well as the intrinsic noise they contain have triggered the need of models that integrate the vast variety of data available to take advantage of the complementarity of the information they provide about regulation. With this idea in mind, we propose BENIN: Biologically Enhanced Network INference. BENIN is a general framework that jointly considers prior knowledge with expression data to boost the network inference. This method considers network inference as a feature selection problem. To solve it, BENIN uses a penalized regression method, elastic net, combined with bootstrap resampling. Using the benchmark dataset from the DREAM 4 challenge, we demonstrate that, when using times series expression data with knockout gene expression data, BENIN significantly outperforms other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信