光伏系统对电能质量的影响

K. Rahimi, Saeed Mohajeryami, A. Majzoobi
{"title":"光伏系统对电能质量的影响","authors":"K. Rahimi, Saeed Mohajeryami, A. Majzoobi","doi":"10.1109/NAPS.2016.7747955","DOIUrl":null,"url":null,"abstract":"Renewable Energy Resources (RER) are growing steadily and they are projected to supply all the electricity demand in the future. Currently, wind and solar energy resources have the highest rates of growth, and specifically in the recent years, solar energy has been number one in growth rate among all types of renewable resources. However, dealing with the solar energy's intermittent nature is the main challenge of its utilization. Fluctuations of received solar irradiance can cause significant variations to the output of Photovoltaic (PV) systems. Those output variations can also affect voltage and current at the Point of Common Coupling (PCC) and consequently, power quality of the system. In this work, fluctuations of a PV system due to a cloud shadow are simulated and their effects on Total Harmonic Distortion (THD), and Individual Harmonic Distortion (IHD) during the period in which the cloud shadow passes over the PV system are studied. Simulations results show that decrease in received irradiance caused by the cloud shadow can significantly impact the current THD of the system. Moreover, the effect of the impedance between the utility grid and the PCC on voltage THD is assessed.","PeriodicalId":249041,"journal":{"name":"2016 North American Power Symposium (NAPS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Effects of photovoltaic systems on power quality\",\"authors\":\"K. Rahimi, Saeed Mohajeryami, A. Majzoobi\",\"doi\":\"10.1109/NAPS.2016.7747955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable Energy Resources (RER) are growing steadily and they are projected to supply all the electricity demand in the future. Currently, wind and solar energy resources have the highest rates of growth, and specifically in the recent years, solar energy has been number one in growth rate among all types of renewable resources. However, dealing with the solar energy's intermittent nature is the main challenge of its utilization. Fluctuations of received solar irradiance can cause significant variations to the output of Photovoltaic (PV) systems. Those output variations can also affect voltage and current at the Point of Common Coupling (PCC) and consequently, power quality of the system. In this work, fluctuations of a PV system due to a cloud shadow are simulated and their effects on Total Harmonic Distortion (THD), and Individual Harmonic Distortion (IHD) during the period in which the cloud shadow passes over the PV system are studied. Simulations results show that decrease in received irradiance caused by the cloud shadow can significantly impact the current THD of the system. Moreover, the effect of the impedance between the utility grid and the PCC on voltage THD is assessed.\",\"PeriodicalId\":249041,\"journal\":{\"name\":\"2016 North American Power Symposium (NAPS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2016.7747955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2016.7747955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

可再生能源(RER)正在稳步增长,预计它们将满足未来所有的电力需求。目前,风能和太阳能资源的增长速度最快,特别是近年来,太阳能在各类可再生资源中增长速度居首位。然而,如何处理太阳能的间歇性是其利用面临的主要挑战。接收太阳辐照度的波动会导致光伏(PV)系统输出的显著变化。这些输出变化也会影响共耦合点(PCC)的电压和电流,从而影响系统的电能质量。在这项工作中,模拟了由于云层阴影引起的光伏系统波动,并研究了它们在云层阴影经过光伏系统期间对总谐波失真(THD)和个别谐波失真(IHD)的影响。仿真结果表明,云阴影引起的接收辐照度下降会显著影响系统的当前THD。此外,还评估了电网与PCC之间的阻抗对电压THD的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of photovoltaic systems on power quality
Renewable Energy Resources (RER) are growing steadily and they are projected to supply all the electricity demand in the future. Currently, wind and solar energy resources have the highest rates of growth, and specifically in the recent years, solar energy has been number one in growth rate among all types of renewable resources. However, dealing with the solar energy's intermittent nature is the main challenge of its utilization. Fluctuations of received solar irradiance can cause significant variations to the output of Photovoltaic (PV) systems. Those output variations can also affect voltage and current at the Point of Common Coupling (PCC) and consequently, power quality of the system. In this work, fluctuations of a PV system due to a cloud shadow are simulated and their effects on Total Harmonic Distortion (THD), and Individual Harmonic Distortion (IHD) during the period in which the cloud shadow passes over the PV system are studied. Simulations results show that decrease in received irradiance caused by the cloud shadow can significantly impact the current THD of the system. Moreover, the effect of the impedance between the utility grid and the PCC on voltage THD is assessed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信