脉动通道流动的LES和混合ranss -LES模拟

Tausif Jamal, Huiyu Wang, D. K. Walters
{"title":"脉动通道流动的LES和混合ranss -LES模拟","authors":"Tausif Jamal, Huiyu Wang, D. K. Walters","doi":"10.1115/IMECE2018-87990","DOIUrl":null,"url":null,"abstract":"Simulation of turbulent boundary layers for flows characterized by unsteady driving conditions is important for solving complicated engineering problems such as combustion, blood flow in stenosed arteries, and flow over immersed structures. These flows are often dominated by complex vortical structures, regions of varying turbulence intensities, and fluctuating pressure fields. Pulsating channel flow is one such case that presents a unique set of challenges for newly developed and existing turbulence models used in computational fluid dynamics (CFD) solvers. In the present study, performance of the dynamic hybrid RANS-LES model (DHRL) with exponential time averaging (ETA) is evaluated against Monotonically Integrated Large Eddy Simulation (MILES) and a previously documented LES study for a fully developed channel flow with a time-periodic driving pressure gradient. Results indicate that MILES over predicts mean streamwise velocity for all forcing frequencies while the DHRL model with ETA provides a method for improved results, especially for the lower frequencies. It is concluded that a hybrid RANS-LES model with ETA is a useful alternative to simulate unsteady non-stationary flows but further work is needed to determine the appropriate filter width for ETA to significantly improve the predictive capabilities of the DHRL model.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LES and Hybrid RANS-LES Simulation of a Pulsating Channel Flow\",\"authors\":\"Tausif Jamal, Huiyu Wang, D. K. Walters\",\"doi\":\"10.1115/IMECE2018-87990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation of turbulent boundary layers for flows characterized by unsteady driving conditions is important for solving complicated engineering problems such as combustion, blood flow in stenosed arteries, and flow over immersed structures. These flows are often dominated by complex vortical structures, regions of varying turbulence intensities, and fluctuating pressure fields. Pulsating channel flow is one such case that presents a unique set of challenges for newly developed and existing turbulence models used in computational fluid dynamics (CFD) solvers. In the present study, performance of the dynamic hybrid RANS-LES model (DHRL) with exponential time averaging (ETA) is evaluated against Monotonically Integrated Large Eddy Simulation (MILES) and a previously documented LES study for a fully developed channel flow with a time-periodic driving pressure gradient. Results indicate that MILES over predicts mean streamwise velocity for all forcing frequencies while the DHRL model with ETA provides a method for improved results, especially for the lower frequencies. It is concluded that a hybrid RANS-LES model with ETA is a useful alternative to simulate unsteady non-stationary flows but further work is needed to determine the appropriate filter width for ETA to significantly improve the predictive capabilities of the DHRL model.\",\"PeriodicalId\":229616,\"journal\":{\"name\":\"Volume 7: Fluids Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

以非定常驱动条件为特征的紊流边界层的模拟对于解决诸如燃烧、狭窄动脉内血流和浸没结构流等复杂工程问题具有重要意义。这些流动通常由复杂的旋涡结构、不同湍流强度的区域和波动的压力场控制。脉动通道流动就是这样一种情况,它对计算流体动力学(CFD)求解器中使用的新开发和现有湍流模型提出了一系列独特的挑战。在本研究中,采用指数时间平均(ETA)的动态混合ranss -LES模型(DHRL)的性能与单调积分大涡模拟(MILES)和先前记录的具有时间周期驱动压力梯度的完全发展的通道流的LES研究进行了评估。结果表明,MILES over预测了所有强迫频率下的平均流向速度,而带有ETA的DHRL模型提供了一种改进结果的方法,特别是在较低频率下。综上所示,带ETA的混合ranss - les模型是模拟非定常流动的有效选择,但需要进一步确定ETA的合适滤波宽度,以显著提高DHRL模型的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LES and Hybrid RANS-LES Simulation of a Pulsating Channel Flow
Simulation of turbulent boundary layers for flows characterized by unsteady driving conditions is important for solving complicated engineering problems such as combustion, blood flow in stenosed arteries, and flow over immersed structures. These flows are often dominated by complex vortical structures, regions of varying turbulence intensities, and fluctuating pressure fields. Pulsating channel flow is one such case that presents a unique set of challenges for newly developed and existing turbulence models used in computational fluid dynamics (CFD) solvers. In the present study, performance of the dynamic hybrid RANS-LES model (DHRL) with exponential time averaging (ETA) is evaluated against Monotonically Integrated Large Eddy Simulation (MILES) and a previously documented LES study for a fully developed channel flow with a time-periodic driving pressure gradient. Results indicate that MILES over predicts mean streamwise velocity for all forcing frequencies while the DHRL model with ETA provides a method for improved results, especially for the lower frequencies. It is concluded that a hybrid RANS-LES model with ETA is a useful alternative to simulate unsteady non-stationary flows but further work is needed to determine the appropriate filter width for ETA to significantly improve the predictive capabilities of the DHRL model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信