{"title":"某些极值有理椭圆曲面盖上椭圆纤振的定义域","authors":"Victoria Cantoral Farf'an","doi":"10.14288/1.0396004","DOIUrl":null,"url":null,"abstract":"We study K3 surfaces over a number field $k$ which are double covers of extremal rational elliptic surfaces. We provide a list of all elliptic fibrations on certain K3 surfaces together with the degree of a field extension over which each genus one fibration is defined and admits a section. We show that the latter depends, in general, on the action of the cover involution on the fibers of the genus 1 fibration.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fields of definition of elliptic fibrations on covers of certain extremal rational elliptic surfaces\",\"authors\":\"Victoria Cantoral Farf'an\",\"doi\":\"10.14288/1.0396004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study K3 surfaces over a number field $k$ which are double covers of extremal rational elliptic surfaces. We provide a list of all elliptic fibrations on certain K3 surfaces together with the degree of a field extension over which each genus one fibration is defined and admits a section. We show that the latter depends, in general, on the action of the cover involution on the fibers of the genus 1 fibration.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14288/1.0396004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14288/1.0396004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fields of definition of elliptic fibrations on covers of certain extremal rational elliptic surfaces
We study K3 surfaces over a number field $k$ which are double covers of extremal rational elliptic surfaces. We provide a list of all elliptic fibrations on certain K3 surfaces together with the degree of a field extension over which each genus one fibration is defined and admits a section. We show that the latter depends, in general, on the action of the cover involution on the fibers of the genus 1 fibration.