通过具有两两相互作用的广义加性模型(GA2M)在医疗保健中的可解释机器学习:预测早产儿严重视网膜病变

Tamer Karatekin, S. Sancak, G. Celik, S. Topçuoğlu, G. Karatekin, Pınar Kırcı, A. Okatan
{"title":"通过具有两两相互作用的广义加性模型(GA2M)在医疗保健中的可解释机器学习:预测早产儿严重视网膜病变","authors":"Tamer Karatekin, S. Sancak, G. Celik, S. Topçuoğlu, G. Karatekin, Pınar Kırcı, A. Okatan","doi":"10.1109/Deep-ML.2019.00020","DOIUrl":null,"url":null,"abstract":"We have investigated the risk factors that lead to severe retinopathy of prematurity using statistical analysis and logistic regression as a form of generalized additive model (GAM) with pairwise interaction terms (GA2M). In this process, we discuss the trade-off between accuracy and interpretability of these machine learning techniques on clinical data. We also confirm the intuition of expert neonatologists on a few risk factors, such as gender, that were previously deemed as clinically not significant in RoP prediction.","PeriodicalId":228378,"journal":{"name":"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity\",\"authors\":\"Tamer Karatekin, S. Sancak, G. Celik, S. Topçuoğlu, G. Karatekin, Pınar Kırcı, A. Okatan\",\"doi\":\"10.1109/Deep-ML.2019.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the risk factors that lead to severe retinopathy of prematurity using statistical analysis and logistic regression as a form of generalized additive model (GAM) with pairwise interaction terms (GA2M). In this process, we discuss the trade-off between accuracy and interpretability of these machine learning techniques on clinical data. We also confirm the intuition of expert neonatologists on a few risk factors, such as gender, that were previously deemed as clinically not significant in RoP prediction.\",\"PeriodicalId\":228378,\"journal\":{\"name\":\"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Deep-ML.2019.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Deep-ML.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们研究了导致早产儿严重视网膜病变的危险因素,使用统计分析和逻辑回归作为具有两两相互作用项(GA2M)的广义加性模型(GAM)的一种形式。在这个过程中,我们讨论了这些机器学习技术在临床数据上的准确性和可解释性之间的权衡。我们还证实了新生儿专家对一些危险因素(如性别)的直觉,这些因素以前被认为在临床上对RoP预测不重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity
We have investigated the risk factors that lead to severe retinopathy of prematurity using statistical analysis and logistic regression as a form of generalized additive model (GAM) with pairwise interaction terms (GA2M). In this process, we discuss the trade-off between accuracy and interpretability of these machine learning techniques on clinical data. We also confirm the intuition of expert neonatologists on a few risk factors, such as gender, that were previously deemed as clinically not significant in RoP prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信