KBMQA:基于知识图谱和BERT的医学问答模型

Zhangkui Liu, Tao Wu
{"title":"KBMQA:基于知识图谱和BERT的医学问答模型","authors":"Zhangkui Liu, Tao Wu","doi":"10.1117/12.2685841","DOIUrl":null,"url":null,"abstract":"The emergence of BERT and Knowledge Graph (KG) has promoted the development of Question Answering (QA), however, existing QA systems are still inadequate in terms of the accuracy of relational reasoning and the interpretability of answers. In this paper, we combine BERT and KG, following and optimizing existing methods to build a medical QA system with better performance - KBMQA. The final experimental results show that KBMQA performs better on both MedQA and MedNLI datasets compared with previous biomedical baseline models and MOP models.","PeriodicalId":305812,"journal":{"name":"International Conference on Electronic Information Technology","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KBMQA: medical question and answering model based on Knowledge Graph and BERT\",\"authors\":\"Zhangkui Liu, Tao Wu\",\"doi\":\"10.1117/12.2685841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of BERT and Knowledge Graph (KG) has promoted the development of Question Answering (QA), however, existing QA systems are still inadequate in terms of the accuracy of relational reasoning and the interpretability of answers. In this paper, we combine BERT and KG, following and optimizing existing methods to build a medical QA system with better performance - KBMQA. The final experimental results show that KBMQA performs better on both MedQA and MedNLI datasets compared with previous biomedical baseline models and MOP models.\",\"PeriodicalId\":305812,\"journal\":{\"name\":\"International Conference on Electronic Information Technology\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2685841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

BERT和知识图(KG)的出现促进了问答(QA)的发展,然而,现有的问答系统在关系推理的准确性和答案的可解释性方面仍然存在不足。本文将BERT和KG相结合,在继承和优化现有方法的基础上,构建了一个性能更好的医疗质量保证系统——KBMQA。最后的实验结果表明,与以往的生物医学基线模型和MOP模型相比,KBMQA在MedQA和MedNLI数据集上的表现都更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KBMQA: medical question and answering model based on Knowledge Graph and BERT
The emergence of BERT and Knowledge Graph (KG) has promoted the development of Question Answering (QA), however, existing QA systems are still inadequate in terms of the accuracy of relational reasoning and the interpretability of answers. In this paper, we combine BERT and KG, following and optimizing existing methods to build a medical QA system with better performance - KBMQA. The final experimental results show that KBMQA performs better on both MedQA and MedNLI datasets compared with previous biomedical baseline models and MOP models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信