{"title":"基于二维视图线性组合和进化优化的姿态不变三维目标识别","authors":"V. Zografos, B. Buxton","doi":"10.1109/ICCTA.2007.105","DOIUrl":null,"url":null,"abstract":"In this work, we present a method for model-based recognition of 3d objects from a small number of 2d intensity images taken from nearby, but otherwise arbitrary viewpoints. Our method works by linearly combining images from two (or more) viewpoints of a 3d object to synthesise novel views of the object. The object is recognised in a target image by matching to such a synthesised, novel view. All that is required is the recovery of the linear combination parameters, and since we are working directly with pixel intensities, we suggest searching the parameter space using an evolutionary optimisation algorithm in order to efficiently recover the optimal parameters and thus recognise the object in the scene","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pose-Invariant 3D Object Recognition Using Linear Combination of 2D Views and Evolutionary Optimisation\",\"authors\":\"V. Zografos, B. Buxton\",\"doi\":\"10.1109/ICCTA.2007.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a method for model-based recognition of 3d objects from a small number of 2d intensity images taken from nearby, but otherwise arbitrary viewpoints. Our method works by linearly combining images from two (or more) viewpoints of a 3d object to synthesise novel views of the object. The object is recognised in a target image by matching to such a synthesised, novel view. All that is required is the recovery of the linear combination parameters, and since we are working directly with pixel intensities, we suggest searching the parameter space using an evolutionary optimisation algorithm in order to efficiently recover the optimal parameters and thus recognise the object in the scene\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pose-Invariant 3D Object Recognition Using Linear Combination of 2D Views and Evolutionary Optimisation
In this work, we present a method for model-based recognition of 3d objects from a small number of 2d intensity images taken from nearby, but otherwise arbitrary viewpoints. Our method works by linearly combining images from two (or more) viewpoints of a 3d object to synthesise novel views of the object. The object is recognised in a target image by matching to such a synthesised, novel view. All that is required is the recovery of the linear combination parameters, and since we are working directly with pixel intensities, we suggest searching the parameter space using an evolutionary optimisation algorithm in order to efficiently recover the optimal parameters and thus recognise the object in the scene