如何传播谣言:打电话给邻居还是散步?

George Giakkoupis, Frederik Mallmann-Trenn, Hayk Saribekyan
{"title":"如何传播谣言:打电话给邻居还是散步?","authors":"George Giakkoupis, Frederik Mallmann-Trenn, Hayk Saribekyan","doi":"10.1145/3293611.3331622","DOIUrl":null,"url":null,"abstract":"We study the problem of randomized information dissemination in networks. We compare the now standard PUSH-PULL protocol, with agent-based alternatives where information is disseminated by a collection of agents performing independent random walks. In the VISIT-EXCHANGE protocol, both nodes and agents store information, and each time an agent visits a node, the two exchange all the information they have. In the MEET-EXCHANGE protocol, only the agents store information, and exchange their information with each agent they meet. We consider the broadcast time of a single piece of information in an n-node graph for the above three protocols, assuming a linear number of agents that start from the stationary distribution. We observe that there are graphs on which the agent-based protocols are significantly faster than PUSH-PULL, and graphs where the converse is true. We attribute the good performance of agent-based algorithms to their inherently fair bandwidth utilization, and conclude that, in certain settings, agent-based information dissemination, separately or in combination with PUSH-PULL, can significantly improve the broadcast time. The graphs considered above are highly non-regular. Our main technical result is that on any regular graph of at least logarithmic degree, PUSH-PULL and VISIT-EXCHANGE have the same asymptotic broadcast time. The proof uses a novel coupling argument which relates the random choices of vertices in PUSH-PULL with the random walks in VISIT-EXCHANGE. Further, we show that the broadcast time of MEET-EXCHANGE is asymptotically at least as large as the other two's on all regular graphs, and strictly larger on some regular graphs. As far as we know, this is the first systematic and thorough comparison of the running times of these very natural information dissemination protocols.","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"How to Spread a Rumor: Call Your Neighbors or Take a Walk?\",\"authors\":\"George Giakkoupis, Frederik Mallmann-Trenn, Hayk Saribekyan\",\"doi\":\"10.1145/3293611.3331622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of randomized information dissemination in networks. We compare the now standard PUSH-PULL protocol, with agent-based alternatives where information is disseminated by a collection of agents performing independent random walks. In the VISIT-EXCHANGE protocol, both nodes and agents store information, and each time an agent visits a node, the two exchange all the information they have. In the MEET-EXCHANGE protocol, only the agents store information, and exchange their information with each agent they meet. We consider the broadcast time of a single piece of information in an n-node graph for the above three protocols, assuming a linear number of agents that start from the stationary distribution. We observe that there are graphs on which the agent-based protocols are significantly faster than PUSH-PULL, and graphs where the converse is true. We attribute the good performance of agent-based algorithms to their inherently fair bandwidth utilization, and conclude that, in certain settings, agent-based information dissemination, separately or in combination with PUSH-PULL, can significantly improve the broadcast time. The graphs considered above are highly non-regular. Our main technical result is that on any regular graph of at least logarithmic degree, PUSH-PULL and VISIT-EXCHANGE have the same asymptotic broadcast time. The proof uses a novel coupling argument which relates the random choices of vertices in PUSH-PULL with the random walks in VISIT-EXCHANGE. Further, we show that the broadcast time of MEET-EXCHANGE is asymptotically at least as large as the other two's on all regular graphs, and strictly larger on some regular graphs. As far as we know, this is the first systematic and thorough comparison of the running times of these very natural information dissemination protocols.\",\"PeriodicalId\":153766,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3293611.3331622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究网络中的随机信息传播问题。我们将现在标准的PUSH-PULL协议与基于代理的替代方案进行比较,其中信息由执行独立随机行走的代理集合传播。在VISIT-EXCHANGE协议中,节点和代理都存储信息,每次代理访问一个节点时,两者交换它们所拥有的所有信息。在met - exchange协议中,只有代理存储信息,并与它们遇到的每个代理交换信息。我们考虑上述三种协议的n节点图中单个信息的广播时间,假设从平稳分布开始的代理数量为线性。我们观察到,在一些图上,基于代理的协议明显快于PUSH-PULL,而在另一些图上,情况正好相反。我们将基于代理的算法的良好性能归因于其固有的公平带宽利用率,并得出结论,在某些设置下,基于代理的信息传播,单独或与PUSH-PULL相结合,可以显着提高广播时间。上面考虑的图表是非规则的。我们的主要技术结果是,在任何至少对数次的正则图上,PUSH-PULL和VISIT-EXCHANGE具有相同的渐近广播时间。该证明采用了一种新颖的耦合论证,将推拉过程中顶点的随机选择与VISIT-EXCHANGE过程中的随机游走联系起来。进一步,我们证明了met - exchange的广播时间在所有正则图上都渐近地至少与其他两种广播时间一样大,并且在某些正则图上严格地更大。据我们所知,这是第一次对这些非常自然的信息传播协议的运行时间进行系统和彻底的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Spread a Rumor: Call Your Neighbors or Take a Walk?
We study the problem of randomized information dissemination in networks. We compare the now standard PUSH-PULL protocol, with agent-based alternatives where information is disseminated by a collection of agents performing independent random walks. In the VISIT-EXCHANGE protocol, both nodes and agents store information, and each time an agent visits a node, the two exchange all the information they have. In the MEET-EXCHANGE protocol, only the agents store information, and exchange their information with each agent they meet. We consider the broadcast time of a single piece of information in an n-node graph for the above three protocols, assuming a linear number of agents that start from the stationary distribution. We observe that there are graphs on which the agent-based protocols are significantly faster than PUSH-PULL, and graphs where the converse is true. We attribute the good performance of agent-based algorithms to their inherently fair bandwidth utilization, and conclude that, in certain settings, agent-based information dissemination, separately or in combination with PUSH-PULL, can significantly improve the broadcast time. The graphs considered above are highly non-regular. Our main technical result is that on any regular graph of at least logarithmic degree, PUSH-PULL and VISIT-EXCHANGE have the same asymptotic broadcast time. The proof uses a novel coupling argument which relates the random choices of vertices in PUSH-PULL with the random walks in VISIT-EXCHANGE. Further, we show that the broadcast time of MEET-EXCHANGE is asymptotically at least as large as the other two's on all regular graphs, and strictly larger on some regular graphs. As far as we know, this is the first systematic and thorough comparison of the running times of these very natural information dissemination protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信