双相情感障碍音频/视觉模式的自动筛查

Zafi Sherhan Syed, K. Sidorov, David Marshall
{"title":"双相情感障碍音频/视觉模式的自动筛查","authors":"Zafi Sherhan Syed, K. Sidorov, David Marshall","doi":"10.1145/3266302.3266315","DOIUrl":null,"url":null,"abstract":"This paper addresses the Bipolar Disorder sub-challenge of the Audio/Visual Emotion recognition Challenge (AVEC) 2018, where the objective is to classify patients suffering from bipolar disorder into states of remission, hypo-mania, and mania, from audio-visual recordings of structured interviews. To this end, we propose 'turbulence features' to capture sudden, erratic changes in feature contours from audio and visual modalities, and demonstrate their efficacy for the task at hand. We introduce Fisher Vector encoding of ComParE low level descriptors (LLDs) and demonstrate that these features are viable for screening of bipolar disorder from speech. We also perform several experiments with standard feature sets from the OpenSmile toolkit as well as multi-modal fusion. The best result achieved on the test set is a UAR = 57.41%, which matches the best result published as the official baseline.","PeriodicalId":123523,"journal":{"name":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Automated Screening for Bipolar Disorder from Audio/Visual Modalities\",\"authors\":\"Zafi Sherhan Syed, K. Sidorov, David Marshall\",\"doi\":\"10.1145/3266302.3266315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the Bipolar Disorder sub-challenge of the Audio/Visual Emotion recognition Challenge (AVEC) 2018, where the objective is to classify patients suffering from bipolar disorder into states of remission, hypo-mania, and mania, from audio-visual recordings of structured interviews. To this end, we propose 'turbulence features' to capture sudden, erratic changes in feature contours from audio and visual modalities, and demonstrate their efficacy for the task at hand. We introduce Fisher Vector encoding of ComParE low level descriptors (LLDs) and demonstrate that these features are viable for screening of bipolar disorder from speech. We also perform several experiments with standard feature sets from the OpenSmile toolkit as well as multi-modal fusion. The best result achieved on the test set is a UAR = 57.41%, which matches the best result published as the official baseline.\",\"PeriodicalId\":123523,\"journal\":{\"name\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3266302.3266315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266302.3266315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文讨论了2018年视听情感识别挑战赛(AVEC)的双相情感障碍子挑战,其目标是根据结构化访谈的视听记录,将双相情感障碍患者分为缓解状态、低躁狂状态和躁狂状态。为此,我们提出了“湍流特征”来捕捉音频和视觉模式中特征轮廓的突然、不稳定变化,并证明它们对手头任务的有效性。我们引入Fisher向量编码的比较低水平描述符(LLDs),并证明这些特征是可行的筛选双相情感障碍从言语。我们还使用OpenSmile工具包中的标准特征集以及多模态融合进行了几个实验。在测试集上获得的最佳结果是UAR = 57.41%,这与作为官方基线发布的最佳结果相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Screening for Bipolar Disorder from Audio/Visual Modalities
This paper addresses the Bipolar Disorder sub-challenge of the Audio/Visual Emotion recognition Challenge (AVEC) 2018, where the objective is to classify patients suffering from bipolar disorder into states of remission, hypo-mania, and mania, from audio-visual recordings of structured interviews. To this end, we propose 'turbulence features' to capture sudden, erratic changes in feature contours from audio and visual modalities, and demonstrate their efficacy for the task at hand. We introduce Fisher Vector encoding of ComParE low level descriptors (LLDs) and demonstrate that these features are viable for screening of bipolar disorder from speech. We also perform several experiments with standard feature sets from the OpenSmile toolkit as well as multi-modal fusion. The best result achieved on the test set is a UAR = 57.41%, which matches the best result published as the official baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信