{"title":"VDLL与VDLL和标量GNSS接收机架构在恶劣场景下的性能比较","authors":"F. Sousa, F. Nunes","doi":"10.1109/NAVITEC.2014.7045140","DOIUrl":null,"url":null,"abstract":"We analyze the advantages and drawbacks of a vector delay/frequency-locked loop (VDFLL) architecture regarding the conventional scalar and the vector delay-locked loop (VDLL) architectures for GNSS receivers in harsh scenarios that include ionospheric scintillation, multipath, and high dynamics motion. The VDFLL is constituted by a bank of code and frequency discriminators feeding a central extended Kaiman filter (EKF) that estimates the receiver's position, velocity, and clock bias. Both code and frequency loops are closed vectorially through the EKF. The VDLL closes the code loop vectorially and the phase loops through individual PLLs while the scalar receiver closes both loops by means of individual independent PLLs and DLLs.","PeriodicalId":254397,"journal":{"name":"2014 7th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Performance comparison of a VDFLL versus VDLL and scalar GNSS receiver architectures in harsh scenarios\",\"authors\":\"F. Sousa, F. Nunes\",\"doi\":\"10.1109/NAVITEC.2014.7045140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the advantages and drawbacks of a vector delay/frequency-locked loop (VDFLL) architecture regarding the conventional scalar and the vector delay-locked loop (VDLL) architectures for GNSS receivers in harsh scenarios that include ionospheric scintillation, multipath, and high dynamics motion. The VDFLL is constituted by a bank of code and frequency discriminators feeding a central extended Kaiman filter (EKF) that estimates the receiver's position, velocity, and clock bias. Both code and frequency loops are closed vectorially through the EKF. The VDLL closes the code loop vectorially and the phase loops through individual PLLs while the scalar receiver closes both loops by means of individual independent PLLs and DLLs.\",\"PeriodicalId\":254397,\"journal\":{\"name\":\"2014 7th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 7th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAVITEC.2014.7045140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAVITEC.2014.7045140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance comparison of a VDFLL versus VDLL and scalar GNSS receiver architectures in harsh scenarios
We analyze the advantages and drawbacks of a vector delay/frequency-locked loop (VDFLL) architecture regarding the conventional scalar and the vector delay-locked loop (VDLL) architectures for GNSS receivers in harsh scenarios that include ionospheric scintillation, multipath, and high dynamics motion. The VDFLL is constituted by a bank of code and frequency discriminators feeding a central extended Kaiman filter (EKF) that estimates the receiver's position, velocity, and clock bias. Both code and frequency loops are closed vectorially through the EKF. The VDLL closes the code loop vectorially and the phase loops through individual PLLs while the scalar receiver closes both loops by means of individual independent PLLs and DLLs.