基于协同在线学习的微博情感检测

Guangxia Li, S. Hoi, Kuiyu Chang, R. Jain
{"title":"基于协同在线学习的微博情感检测","authors":"Guangxia Li, S. Hoi, Kuiyu Chang, R. Jain","doi":"10.1109/ICDM.2010.139","DOIUrl":null,"url":null,"abstract":"We study the online micro-blog sentiment detection problem, which aims to determine whether a micro-blog post expresses emotions. This problem is challenging because a micro-blog post is very short and individuals have distinct ways of expressing emotions. A single classification model trained on the entire corpus may fail to capture characteristics unique to each user. On the other hand, a personalized model for each user may be inaccurate due to the scarcity of training data, especially at the very beginning where users have just posted a few entries. To overcome these challenges, we propose learning a global model over all micro-bloggers, which is then leveraged to continuously refine the individual models through a collaborative online learning way. We evaluate our algorithm on a real-life micro-blog dataset collected from the popular micro-blog site – Twitter. Results show that our algorithm is effective and efficient for timely sentiment detection in real micro-blogging applications.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Micro-blogging Sentiment Detection by Collaborative Online Learning\",\"authors\":\"Guangxia Li, S. Hoi, Kuiyu Chang, R. Jain\",\"doi\":\"10.1109/ICDM.2010.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the online micro-blog sentiment detection problem, which aims to determine whether a micro-blog post expresses emotions. This problem is challenging because a micro-blog post is very short and individuals have distinct ways of expressing emotions. A single classification model trained on the entire corpus may fail to capture characteristics unique to each user. On the other hand, a personalized model for each user may be inaccurate due to the scarcity of training data, especially at the very beginning where users have just posted a few entries. To overcome these challenges, we propose learning a global model over all micro-bloggers, which is then leveraged to continuously refine the individual models through a collaborative online learning way. We evaluate our algorithm on a real-life micro-blog dataset collected from the popular micro-blog site – Twitter. Results show that our algorithm is effective and efficient for timely sentiment detection in real micro-blogging applications.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们研究了在线微博情感检测问题,该问题旨在确定微博帖子是否表达了情感。这个问题很有挑战性,因为微博很短,每个人都有不同的表达情感的方式。在整个语料库上训练的单一分类模型可能无法捕获每个用户独有的特征。另一方面,由于训练数据的稀缺性,针对每个用户的个性化模型可能是不准确的,特别是在用户刚刚发布几个条目的初始阶段。为了克服这些挑战,我们建议在所有微博博主中学习一个全局模型,然后利用该模型通过协作在线学习的方式不断完善个体模型。我们在一个真实的微博数据集上评估了我们的算法,这些数据集来自流行的微博网站——Twitter。实验结果表明,该算法对于微博实时情感检测是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro-blogging Sentiment Detection by Collaborative Online Learning
We study the online micro-blog sentiment detection problem, which aims to determine whether a micro-blog post expresses emotions. This problem is challenging because a micro-blog post is very short and individuals have distinct ways of expressing emotions. A single classification model trained on the entire corpus may fail to capture characteristics unique to each user. On the other hand, a personalized model for each user may be inaccurate due to the scarcity of training data, especially at the very beginning where users have just posted a few entries. To overcome these challenges, we propose learning a global model over all micro-bloggers, which is then leveraged to continuously refine the individual models through a collaborative online learning way. We evaluate our algorithm on a real-life micro-blog dataset collected from the popular micro-blog site – Twitter. Results show that our algorithm is effective and efficient for timely sentiment detection in real micro-blogging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信