{"title":"一种高效的稀疏次展开算法","authors":"M. Griss","doi":"10.1145/800191.805633","DOIUrl":null,"url":null,"abstract":"An improved algorithm for computing the minors of a (large) sparse matrix of polynomials is described, with emphasis on efficiency and optimal ordering. A possible application to polynomial resultant computation is discussed.","PeriodicalId":379505,"journal":{"name":"ACM '76","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An efficient sparse minor expansion algorithm\",\"authors\":\"M. Griss\",\"doi\":\"10.1145/800191.805633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved algorithm for computing the minors of a (large) sparse matrix of polynomials is described, with emphasis on efficiency and optimal ordering. A possible application to polynomial resultant computation is discussed.\",\"PeriodicalId\":379505,\"journal\":{\"name\":\"ACM '76\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM '76\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800191.805633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '76","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800191.805633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An improved algorithm for computing the minors of a (large) sparse matrix of polynomials is described, with emphasis on efficiency and optimal ordering. A possible application to polynomial resultant computation is discussed.