{"title":"基于多步延迟补偿的鼠笼式异步电动机预测直接转矩控制","authors":"Najimaldin M. Abbas","doi":"10.11591/IJAPE.V10.I3.PP244-252","DOIUrl":null,"url":null,"abstract":"The squirrel cage induction motor direct torque control main problems due to torque and large stator flux pulsation. In this an improved model predictive direct torque control algorithm considering multi-step delay compensation is proposed. At each sampling moment, predict the stator flux linkage and torque at the next moment under each voltage vector. The optimal voltage vector deviation from the stator flux linkage reference value and torque reference value are selected as the minimum objective function. Aiming at the problem of one-shot delay in digital control systems, a multi-step predictive delay compensation measure is studied. Simulation shows that the algorithm can effectively reduce torque and stator flux pulsation, reduce current harmonic distortion, and solve the delay problem in digital systems.","PeriodicalId":280098,"journal":{"name":"International Journal of Applied Power Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Squirrel Cage Induction Motor Predictive Direct Torque Control based on multi-step delay compensation\",\"authors\":\"Najimaldin M. Abbas\",\"doi\":\"10.11591/IJAPE.V10.I3.PP244-252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The squirrel cage induction motor direct torque control main problems due to torque and large stator flux pulsation. In this an improved model predictive direct torque control algorithm considering multi-step delay compensation is proposed. At each sampling moment, predict the stator flux linkage and torque at the next moment under each voltage vector. The optimal voltage vector deviation from the stator flux linkage reference value and torque reference value are selected as the minimum objective function. Aiming at the problem of one-shot delay in digital control systems, a multi-step predictive delay compensation measure is studied. Simulation shows that the algorithm can effectively reduce torque and stator flux pulsation, reduce current harmonic distortion, and solve the delay problem in digital systems.\",\"PeriodicalId\":280098,\"journal\":{\"name\":\"International Journal of Applied Power Engineering\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJAPE.V10.I3.PP244-252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJAPE.V10.I3.PP244-252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Squirrel Cage Induction Motor Predictive Direct Torque Control based on multi-step delay compensation
The squirrel cage induction motor direct torque control main problems due to torque and large stator flux pulsation. In this an improved model predictive direct torque control algorithm considering multi-step delay compensation is proposed. At each sampling moment, predict the stator flux linkage and torque at the next moment under each voltage vector. The optimal voltage vector deviation from the stator flux linkage reference value and torque reference value are selected as the minimum objective function. Aiming at the problem of one-shot delay in digital control systems, a multi-step predictive delay compensation measure is studied. Simulation shows that the algorithm can effectively reduce torque and stator flux pulsation, reduce current harmonic distortion, and solve the delay problem in digital systems.