空间物体的LWIR偏振观测模拟

M. Pesses, John Tan, Ryan Hash, R. Swartz
{"title":"空间物体的LWIR偏振观测模拟","authors":"M. Pesses, John Tan, Ryan Hash, R. Swartz","doi":"10.1109/AIPR.2002.1182271","DOIUrl":null,"url":null,"abstract":"SAIC's 3D LWIR spectropolarimetric signature model, Polar Heat, is used to simulate LWIR polarimetric observations of space objects. Both imaging and nonimaging simulated observations are presented for spinning and tumbling satellites, as well as RVs (reentry vehicles) and decoys. Polar Heat is a 1/sup st/ principle model that extends microfacet-based scattering models from intensity to polarimetric using a computational approach that utilizes the Born Wolf coherence matrix to integrate reflected and self-emitted radiation seamlessly. Thermal self-emission is transmitted internal blackbody radiation that is modified by passing through the change in the index of refraction that occurs at the surface-space interface. Polar Heat includes Fresnel and \"BRDF\" interactions, as well as incoherent scattering, shadowing, obscuration, terrestrial and space emissions and CAD target objects. Multi-bounce and atmospheric transport effects are neglected in the results presented. Initial simulations suggest that polarimetric observations could provide a more sensitive way to detect and identify space objects.","PeriodicalId":379110,"journal":{"name":"Applied Imagery Pattern Recognition Workshop, 2002. Proceedings.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Simulation of LWIR polarimetric observations of space objects\",\"authors\":\"M. Pesses, John Tan, Ryan Hash, R. Swartz\",\"doi\":\"10.1109/AIPR.2002.1182271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SAIC's 3D LWIR spectropolarimetric signature model, Polar Heat, is used to simulate LWIR polarimetric observations of space objects. Both imaging and nonimaging simulated observations are presented for spinning and tumbling satellites, as well as RVs (reentry vehicles) and decoys. Polar Heat is a 1/sup st/ principle model that extends microfacet-based scattering models from intensity to polarimetric using a computational approach that utilizes the Born Wolf coherence matrix to integrate reflected and self-emitted radiation seamlessly. Thermal self-emission is transmitted internal blackbody radiation that is modified by passing through the change in the index of refraction that occurs at the surface-space interface. Polar Heat includes Fresnel and \\\"BRDF\\\" interactions, as well as incoherent scattering, shadowing, obscuration, terrestrial and space emissions and CAD target objects. Multi-bounce and atmospheric transport effects are neglected in the results presented. Initial simulations suggest that polarimetric observations could provide a more sensitive way to detect and identify space objects.\",\"PeriodicalId\":379110,\"journal\":{\"name\":\"Applied Imagery Pattern Recognition Workshop, 2002. Proceedings.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Imagery Pattern Recognition Workshop, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2002.1182271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Imagery Pattern Recognition Workshop, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2002.1182271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

SAIC的三维LWIR光谱偏振特征模型Polar Heat用于模拟空间物体的LWIR偏振观测。对旋转和翻滚卫星、再入飞行器和诱饵进行了成像和非成像模拟观测。Polar Heat是一个1/sup / principle模型,利用Born Wolf相干矩阵无缝集成反射和自发射辐射的计算方法,将基于微面的散射模型从强度扩展到极化。热自发射是通过表面-空间界面处发生的折射率变化而被修正的黑体内部辐射。极地热包括菲涅耳和“BRDF”相互作用,以及非相干散射、阴影、遮挡、地面和空间发射以及CAD目标物体。结果忽略了多次弹跳和大气输运效应。最初的模拟表明,极化观测可以提供一种更灵敏的方法来探测和识别空间物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of LWIR polarimetric observations of space objects
SAIC's 3D LWIR spectropolarimetric signature model, Polar Heat, is used to simulate LWIR polarimetric observations of space objects. Both imaging and nonimaging simulated observations are presented for spinning and tumbling satellites, as well as RVs (reentry vehicles) and decoys. Polar Heat is a 1/sup st/ principle model that extends microfacet-based scattering models from intensity to polarimetric using a computational approach that utilizes the Born Wolf coherence matrix to integrate reflected and self-emitted radiation seamlessly. Thermal self-emission is transmitted internal blackbody radiation that is modified by passing through the change in the index of refraction that occurs at the surface-space interface. Polar Heat includes Fresnel and "BRDF" interactions, as well as incoherent scattering, shadowing, obscuration, terrestrial and space emissions and CAD target objects. Multi-bounce and atmospheric transport effects are neglected in the results presented. Initial simulations suggest that polarimetric observations could provide a more sensitive way to detect and identify space objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信